Characterisation of powder metallurgy Cu-ZrO$_2$ composites

Khaloobagheri, M.*, Janipour, B., Askari, N., Shafiee Kamal Abad, E.

Department of Materials Science and Engineering, Imam Khomeini International University, Iran

Abstract

Cu-ZrO$_2$ composites can be used as electrical contact materials in relays, contactors, switches, circuit breakers, electronic packaging requiring good electrical and thermal conductivity as well as welding or brazing properties. In the presented work, copper matrix composites reinforced with 8 mol % yttria-stabilised 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, and 5 wt. % zirconia (8-YSZ) particles were fabricated by the powder metallurgy method. Cu and Cu-ZrO$_2$ powder mixtures were compacted with a compressive force of 500 MPa and sintered at 900 °C for 2 h within an argon atmosphere. The results of the study on the mechanical properties of the composites showed that with increasing content of ZrO$_2$, the micro-hardness and compressive strength increase. The relative densities of the composites decreased from 96.1 % to 92.0 % with increasing zirconia content up to 5 wt. %. The results of the electrical test on the composites indicated that electrical conductivity reduced gradually with increase in reinforcement content. SEM and EDS studies showed that Cu-ZrO$_2$ composites have a uniform microstructure in which zirconia particles are distributed uniformly in the Cu matrix.

Keywords:
Powder metallurgy
Cu-ZrO$_2$ composites
Mechanical properties
Electrical conductivity

*Corresponding author:
mahmoodba_2006@yahoo.com
(Khaloobagheri, M.)

Article history:
Received 29 July 2013
Revised 16 November 2013
Accepted 20 November 2013

© 2013 PEL, University of Maribor. All rights reserved.

References

