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In	 this	 paper,	 a	mathematical	model	 is	 proposed	 using	 economic	 and	 envi‐
ronmental	 criteria	 for	 a	 type‐2	 fuzzy	 (T2F)	 cell	 formation	 (CF)	 problem	
emphasizing	 the	 effect	 of	 the	man‐machine	 relationship	 aspect.	 This	model	
aims	to	show	the	use	of	this	aspect	in	CF	to	minimize	the	costs	of	processing,	
material	movement,	 energy	 loss,	 and	 tooling.	 For	 this	 purpose,	 a	 two‐stage
defuzzification	 procedure	 is	 used	 to	 convert	 the	 T2F	 variable	 into	 a	 crisp	
value.	 Due	 to	 NP‐hardness	 of	 the	 model	 and	 problem, a	 genetic	 algorithm	
(GA)	is	used	to	derive	the	appropriate	solutions.	Furthermore,	because	there	
is	 no	 any	 existing	 benchmark	 to	 validate	 the	 performance	 of	 the	 proposed	
model,	 three	 tuned	meta‐heuristic	 algorithms,	namely,	 differential	 evolution	
(DE),	harmony	search	 (HS)	and	particle	 swarm	optimization	 (PSO),	are	pro‐
posed	and	used.	The	present	research	uses	the	Taguchi	method	to	adjust	the	
parameters	 in	 the	 four	proposed	 algorithms.	 Furthermore,	 15	 examples	 are	
used	to	validate	the	presented	model.	The	results	show	that	PSO	is	the	most	
appropriate	algorithm	for	solving	the	model.	
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1. Introduction

Nowadays,	 the	 competitive	 environment	 throughout	 the	world	 has	 led	 the	 involved	manufac‐
turing	industries	to	supply	the	highest	quality,	affordable	products	such	that	recent	approaches	
focus	more	on	 the	ever‐growing	manufacturing	 costs	 including	 those	associated	with	 location,	
energy,	 and	 transportation	 system.	 Group	 technology	 (GT)	 as	 one	 of	 the	 most	 efficient	
approaches	 tries	 to	group	parts	and	machines	 in	 terms	of	 their	similarities	 in	production	pro‐
cesses,	functionalities,	and	geometries	[1].	Cellular	manufacturing	(CM)	as	an	application	of	GT	
in	 a	manufacturing	 system	 is	 utilized	 to	 classify	 similar	 parts	 into	 families	 assigning	different	
machines	to	cells	[2].	The	CMS	design	involves	four	principal	stages,	in	which	each	of	them	can	
be	considered	as	an	individual	problem,	namely	CF,	layout,	scheduling	and	resource	assignment	
(RA)	 [3].	As	 the	CF	problem	comes	up	as	 the	 first	 stage	 in	 the	CMS	design,	 investigators	have	
attempted	to	optimally	solve	the	problem.		

For	instance,	Majazi‐Delfard	[4]	introduced	a	non‐linear	model	for	the	dynamic	cell	formation	
(DCF)	in	terms	of	the	quantity	and	length	of	intra‐	and	inter‐cell	travels.	Deljoo	et	al.	[5]	provid‐
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ed	a	GA‐based	solution	to	the	DCF	problem	identifying	errors	in	the	models	recommended	in	the	
literature,	 declining	 their	 helpful	 perspective	 and	 presenting	 a	 novel	 formulation	 for	 the	 DCF	
problem.	Bagheri	and	Bashiri	[6]	utilized	a	LP‐metric	approach	to	a	proposed	model	comprising	
of	CF,	layout	and	worker	assignment	components.	Xu	et	al.	[7]	provided	a	bat	algorithm	(BA)	to	
the	 dual	 flexible	 job‐shop	 scheduling	 problem	 considering	 the	 process	 sequence	 and	machine	
selection	 flexibility.	Zupan	et	al.	 [8]	presented	a	method	based	on	a	combination	of	schmigalla	
modified	 triangular	method,	 the	 schwerdfeger	circular	 process,	 and	 a	 simulation	model	to	 the	
layout	optimization	of	a	production	cell	considering	the	intensity	of	the	material	flow.	Nie	et	al.	
[9]	utilized	a	simulation	model	for	a	Token‐oriented	Petri	net‐based	flexible	manufacturing	cell.		

Mahdavi	et	al.	[10]	presented	a	two‐stage	approach	to	a	CF	problem	considering	interval	T2F	
interactional	interests	among	workers.	In	the	first	stage,	a	multi‐depot	multiple	traveling	sales‐
man	problem	model	is	used	to	assign	workers	to	cells.	In	the	second	stage,	a	mathematical	mod‐
el	is	applied	to	assign	machines	to	cells.	With	respect	to	the	historical	perspective,	sustainability	
was	conceptualized	in	the	late	1960’s	and	early	1970’s	stressing	the	environmental	effect	of	in‐
dustrial	 projects	 [11].	 Sustainability	 was	 represented	 by	 Lozano	 [12]	 in	 three	 dimensions,	 in	
which	 themes	 in	economic,	environmental,	 and	social	aspects	 interact	 in	 the	 temporal	 respec‐
tive.	The	literature	review	also	reveals	the	fact	that	while	the	CMS	design	has	received	consider‐
able	attention,	social	and	environmental	aspects	have	been	underexplored	with	the	majority	of	
the	criteria	investigated	in	the	associated	literature	devoted	to	economic	rather	than	social	and	
environmental	issues	[13].		

Niakan	et	al.	 [14]	proposed	a	mathematical	model	of	 the	problem	comprising	of	 two	objec‐
tives	to	investigate	the	trade‐off	between	the	total	cost	minimization	and	social	issue	maximiza‐
tion	attempting	to	solve	 the	problem	using	a	non‐dominated	sorting	genetic	algorithm	(NSGA‐
II).	In	addition,	Niakan	et	al.	[15]	proposed	a	model	for	the	cost	minimization	and	the	machine	
energy	 loss	 minimization	 incorporating	 a	 social	 constraint	 developing	 an	 NSGA‐II	 solve	 the	
problem.	Furthermore,	Niakan	et	al.	[16]	introduced	a	model	possessing	two	objectives	for	the	
DCF	 problem	 minimizing	 production	 and	 worker	 costs	 and	 total	 production	 waste	 including	
energy,	 chemical	 material,	 raw	material,	 CO2	 emissions.	 Proposing	 the	 social	 criteria	 as	 con‐
straints,	 the	 researchers	 utilized	 the	NSGA‐II	 and	multi‐objective	 simulated	 annealing	 (MOSA)	
algorithms	to	provide	a	solution	for	the	bi‐objective	model.		

The	literature	mostly	considers	input	parameters	in	the	CF	to	be	deterministic.	However,	in	
practice,	there	are	a	large	number	of	uncertain	and	imprecise	parameters	involved.	As	the	quan‐
tity	of	data	may	not	always	be	sufficient	for	the	uncertain	parameters	prediction,	fuzzy	logic	is	
utilized	as	a	 robust	 instrument	 to	gauge	 this	uncertainty	 through	 the	medium	of	 the	personal	
knowledge	[17].	To	describe	type‐2	fuzziness,	a	T2F	variable	represents	a	map	extending	from	
the	fuzzy	possibility	space	to	the	real	number	space	[18].	Miller	and	John	[19] assert	that	further	
uncertainty	degrees	supplied	through	the	interval	type‐2	fuzzy	sets	(IT‐2FS)	logic	makes	it	pos‐
sible	to	more	optimally	show	the	uncertainty	and	vagueness	of	resource	planning	models.	Qin	et	
al.	[18]	presented	three	categories	of	critical	values	(CVs)	for	a	regular	fuzzy	variable	(RFV)	and	
three	reduction	methods	for	a	T2F	variable.		

Research	 conducted	 by	Kundu	 et	al.	 [20]	 examines	 transportation	 problems	 using	 T2F	 pa‐
rameters	wherein	the	first	values	of	the	T2F	parameters	were	defuzzified	using	CV‐based	reduc‐
tion	methods	to	type‐1	fuzzy	variables,	and	the	centroid	method	was	employed	for	total	defuzz‐
ification.		

The	review	of	the	related	literature	reveals	the	most	commonly used	criteria	in	CF	to	be	the	
associated	costs.	Therefore,	to	bridge	this	gap,	a	mathematical	model	was	developed	using	eco‐
nomic	and	environmental	criteria	and	a	T2F	parameter	for	CF	and	RA	problems	simultaneously.	
The	novelty	of	the	present	research	partly	lies	in	the	consideration	of	worker‐machine	relation‐
ship	for	worker	allocation	where	the	worker	can	be	considered	as	a	significant	industrial	system	
component.	The	present	paper	consists	of	the	problem	statement	and	mathematical	model	(Sec‐
tion	 2),	 solution	methodologies	 (Section	 3),	 computational	 results	 (Section	 4),	 and	 conclusion	
(Section	5).	
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2. Problem statement and definition of objective function

This	section	discusses	a	T2F	model	 for	 the	CF	considering	economic,	environmental	and	man‐
machine	relationship	aspects.	

2.1 Worker‐machine relationship  

Nowadays,	numerous	machine	 tools	are	either	 totally	or	partially	automatically	operated	with	
the	worker	being	usually	 idle	 for	a	portion	of	 the	cycle.	The	potential	use	of	 this	 idle	 time	can	
enhance	worker	earnings	and	the	efficiency	of	a	manufacture.	The	man‐machine	process	chart	
evidently	depicts	the	respective	idle	machine	time	and	worker	time	areas,	which	normally	rep‐
resent	 desirable	 locations	 to	 initiate	 effective	 improvements.	 Although	 this	 chart	 is	 generally	
implemented	to	specify	the	number	of	machines	assigned	to	a	worker,	the	application	of	a	math‐
ematical	model	can	substantially	lessen	the	time	needed	to	do	so.	Such	ideal	situations	are	gen‐
erally	referred	to	as	synchronous	servicing	with	the	number	of	machines	assigned	computed	as	
shown	in	Eq.	1.		

݉ ൌ
ݏ  ݎ
ݏ  ݓ

(1)

where	m	represents	the	number	of	machines	being	operated	by	each	worker,	s	worker	servicing	
time	per	machine,	r	machine	working	time	and	w	walking	time	between	two	machines,	the	num‐
ber	 of	 machines	must	 be	 represented	 by	 a	 whole	 number;	 otherwise,	 we	 have	 the	 following	
equation.	

݈݉  ݉ ൏ ݑ݉ (2)

If	the	number	of	machines	does	not	represent	a	whole	number,	the	minimum	total	cost	per	piece	
criteria	can	be	used	for	the	optimum	operation.	The	total	cost	per	piece	for	݈݉	and	݉ݑ	machines	
are	given	in	Eqs.	3	and	4.	

ܶC	 ൌ 	 ሺܥଵ. ሺݏ  ሻݎ  ݈݉. .ଶܥ ሺݏ  ሻሻݎ ݈݉⁄ 	 (3)

ܶC௨	 ൌ ሺݏ  ଵܥሻሺݓ  	ሻݑ݉.ଶܥ (4)

where	C1	and	ܥଶ	are	 the	worker	and	machine	costs,	 respectively.	The	number	of	machines	as‐
signed	to	workers	represents	the	minimum	total	cost	per	piece	[21].	

2.2 Environmental criteria 

With	the	passage	of	time,	humans	have	damaged	the	environment	through	the	waste	production	
and	uncontrolled	use	of	natural	resources	to	satisfy	the	ever‐increasing	unprecedented	use	level,	
which	was	 far	beyond	 the	nature’s	 capacity	 to	 restore	and/or	regenerate	 itself.	The	 fear	of	an	
uncertain	 future	 for	 the	world	made	 it	necessary	 to	grasp	how	 individuals,	organizations,	 and	
governments	have	cooperated	to	discover	approaches	to	prevent	a	global	collapse	[22].	One	of	
the	objective	 function	 terms	 is	 to	minimize	 the	 total	 system	energy	 loss	cost.	The	relationship	
between	man	and	the	machine	in	the	CF	model	leads	to	the	far	better	use	of	both	workers	and	
machine	time,	and	more	optimal	balance	in	the	work	cycle.	The	man	and	machine	relationship	
tools	depict	the	areas,	in	which	machine	and	worker	idle	times	take	place.	Thus,	the	use	of	these	
idle	 times	 can	 enhance	 worker	 earnings	 enhancing	 the	 production	 efficiency	 [21].	 In	 the	 re‐
searchers’	proposed	model,	all	the	machines	are	considered	as	a	multi‐functional	task.	The	ma‐
chines	 require	highly	 skilled	workers	 thus	providing	workers	with	 the	opportunity	 to	 acquire	
numerous	skills	expanding	their	potential.		

2.3 T2F set  

A	T2F	 set	was	proposed	 as	 an	 extension	 of	 an	 ordinary	 fuzzy	 set.	 Let	Γ	 be	 the	 universe,	 Pos:	
A→ ሾ0,1ሿ	be	a	set	function	on	the	ample	field	A	and	Pos	is	a	possibility	criterion.	If	(Γ, A, Pos)	is	a	
possibility	space,	then	an	m‐ary	regular	fuzzy	vector	ξ	=	(ξ1,ξ2,...,ξm)	is	a	map	Γ	→	[0,1]m	for	any	t	=	
(t1,	t2,	...,	tm)	∈[0,1]m,	one	has	the	following	equation:	

{γ	∈	Γ	|	ξ(γ)	≤	t}	=	{γ	∈	Γ	|	ξ1	(γ)	≤	t1,	ξ2	(γ)	≤t2,…,	ξm	(γ)	≤	tm} ∈	A	 (5)
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as	m=1,	ξ	is	a	RFV.	Let	ܲݏ෪ :	A→ ሾ0,1ሿ	be	a	set	function	on	A	such	that	{ܲݏ෪ 	(A)	|	߳ܣ A	}	is	an	RFVs	
and	ܲݏ෪ 	is	a	 fuzzy	possibility	criteria.	 If	μ	௦ሺ௰	ሻ෫ (1)	=	1,	 then	ܲݏ෪ 	is	a	regular	 fuzzy	possibility

criteria.	If	(Γ, A, ܲݏ෪ ) is	a	fuzzy	possibility	space	(FPS),	then	an	m‐ary	T2F	vector	ξ෨	=	(ξ෨1,ξ෨2,...,ξ෨m)	is	
a	map	Γ	→�m	for	any	ݎ ൌ ሺݎଵ, ,ଶݎ . . . , ሻݎ ∈ Ը,	as	shown	in	Eq.	6.	

ሼߛ ∈ ሻߛሚሺߦ	|߁  ሽݎ ൌ ሼߛ ∈ |߁ ଵ෩ߦ ሺߛሻ  ,ଵݎ ሻߛଶ෪ሺߦ  ,ଶݎ … , ෪ߦ ሺߛሻ  ሽݎ ∈	A	 (6)

as	݉ ൌ 	.[18]	variable	T2F	a	is	ሚߦ	,1

Critical	value		

Let	ߦ ൌ ሺݎଵ, ,ଶݎ ,ଷݎ ߦ	and	ସሻݎ ൌ ሺݎଵ, ,ଶݎ 	,Then	respectively.	RFV,	triangular	and	trapezoidal	a	be	ଷሻݎ
we	have	the	following	items	in	Table	1 [18].	

Table	1 Component	of	RFVs		
trapezoidal	 triangular	

optimistic	CV	of	ߦሚ	 ସݎ ሺ1  ସݎ െ ⁄ଷݎ ሻ ଷݎ ሺ1  ଷݎ െ⁄ 	ଶሻݎ

pessimistic	CV	of	ߦሚ	 ଶݎ ሺ1  ଶݎ െ⁄ ଵሻݎ ଶݎ ሺ1  ଶݎ െ⁄ 	ଵሻݎ

The	CV	of	ߦሚ		

ە
ۖۖ
۔

ۖۖ
ۓ

ଶݎ2 െ ଵݎ
1  2ሺݎଶ െ ଵሻݎ

ଶݎ 
1
2

1
2

ଶݎ 
1
2
 ଷݎ

ସݎ
1  2ሺݎସ െ ଷሻݎ

ଷݎ 
1
2

	

ە
۔

ۓ
ଶݎ2 െ ଵݎ

1  2ሺݎଶ െ ଵሻݎ
ଶݎ 

1
2

ଷݎ
1  2ሺݎଷ െ ଶሻݎ

ଶݎ 
1
2

	

Centroid	method	

The	centroid	method	is	the	most	commonly	used	method	for	transforming	the	type‐1	fuzzy	into	
crisp	values.	The	centroid	method	can	be	defined	by	the	Eq.	7	for	the	discrete	case	[23].	

∗ݖ ൌ
∑ .ݖ ෩ߤ ሺݖሻ௭

∑ ෩ߤ ሺݖሻ௭
	 (7)

Defuzzification 

In	the	present	research,	a	two‐stage	defuzzification	procedure	is	employed	to	transform	the	T2F	
variable	to	crisp	value.	Initially,	the	CV	is	utilized	for	RFVs	for	transforming	the	T2F	into	type‐1	
fuzzy.	Then,	the	centroid	method	is	employed	in	order	to	transform	the	type‐1	fuzzy	into	crisp	
values.	

2.4 Assumptions 

For	 the	 CF	 considered	 in	 this	 paper,	 every	 single	 operation	 on	 each	 part	 classification	 can	 be	
executed	 on	multi‐functional	 and	 identical	machines.	 Each	part	 type	demand,	 each	 tool	 type’s	
tool	life,	maximum	cell	number	and	worker‐part‐machine‐tool‐worker	combination	compatibil‐
ity	are	given.	The	average	quantity	of	energy	wasted	by	each	machine	type	in	a	unit	of	time	and	
energy	price	 in	a	unit	of	 time	 is	also	known	as	 is	 the	 total	servicing	time	of	a	worker	 for	each	
machine. 

2.5 Notations and parameters 

	ݎ Machine	m	 working	 time	 for	 performing	 operation	 o	 on	 part	 p	with	 tool	 h	 by	
worker	g		

ܽ	 1,	if	machine	m	is	employed	to	operation	o	for	part	p	with	tool	h	by	worker	g;	and	
0,	otherwise	

	௧ߙ Cost	related	to	inter‐cell	movement	for	part	p	in	a	distance	unit		
	௧ߙ Cost	related	to	intra‐cell	movement	for	part	p	in	a	distance	unit		
ܳ	 Demand	for	part	p	

ܶ	 Time	capacity	for	machine	m	
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ܶ	 Time	capacity	for	worker	g	
ܷ	 Upper	bound	of	machines	allowed	in	cell	k		
݀ᇱ	 Average	distance	among	cells	k	and	k'		
	ݏ Worker	servicing	time	per	machine	m	to	perform	operation	o	on	part	p	using	tool	

h	by	worker	g	
	ݓ Walking	time	between	machine	m	 taken	to	process	operation	o	 for	part	p	using	

tool	h	by	worker	g	to	the	next	machine	
	ܥ Operating	 cost	 on	machine	m	 to	 process	 operation	o	 on	 part	p	 using	 tool	h	 by	

worker	g	
	ᇲܧ 1,	if	݇ ് ݇′;	and	0,	if	݇ ൌ ݇′	
	ଶܥ 	 Machine	(m)	cost	for	a	time	unit	
	ଵܥ 	 Worker	(g)	cost	for	a	time	unit	
	ߛ Cost	of	tool	h	
	௧݄ܿݐܽܤ Inter‐cell	batch	size	motion	for	part	p	
	௧݄ܿݐܽܤ Intra‐cell	batch	size	motion	for	part	p	
	݂݁݅ܮ݈ܶ Tool	life	of	tool	h	
߮	 	 Average	quantity	of	energy	wasted	by	each	machine	m	in	unit	time	
Eܥ෪ 	 Price	of	energy	in	unit	time 

2.6 Decision variables 

	ݔ 1,	if	machine	m	is	used	for	operation	o	of	part	p	using	tool	h	by	worker	g	in	cell	k;	
and	0,	otherwise	

	ݑ Number	of	tool	copies	for	tool	h	on	machine	m	
	ݕ 1,	if	operation	o	of	part	p	is	performed	on	machine	m	in	cell	k;	and	0,	otherwise	
݈ 1,	if	operation	o	of	part	p	is	performed	on	machine	m;	and	0,	otherwise	
݈݈ 1,	if	machine	m	is	assigned	to	cell	k;	and	0,	otherwise	
ܸ1 1,	if	(mu)	machine	݉	is	allocated	to	worker	g;	and	0,	otherwise	
ܸ2	 	 1,	if	(ml)	machine	݉	is	allocated	to	worker	g;	and	0,	otherwise	
݈݉	 Lower	whole	quantity	of	machine	m	allocated	to	worker	g	
	ݑ݉ Upper	whole	quantity	of	machine	m	allocated	to	worker	g	
ܶC		 Total	cost	per	piece	from	one	machine	(݈݉)	݉	and	worker	g	
ܶC௨		 Total	cost	per	piece	from	one	machine	(݉u)	݉	and	worker	g	
݉݉	 Number	of	machine	m	assigned	to	worker	g	in	cell	k 

2.7 Objective function 

The	objective	function	of	the	considered	model	is	to	minimize	the	costs	of	processing,	material	
movement,	energy	loss,	and	tooling.	

		Min ൌ 	  ܳܥݔ
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The	first	sentence	in	the	objective	function	(Eq.	8)	represents	the	total	cost	of	the	process.	The	
second	and	third	terms	represent	the	total	material	transportation	cost.	The	fourth	term	is	the	
cost	of	energy	loss	in	the	system	at	a	time	unit.	The	fifth	term	represents	the	total	tool	cost.	Eq.	9	
and	Eq.	10	express	the	operation‐part‐machine‐tool‐worker	combinations.	Eq.	11	limits	the	cell	
size.	Eq.	12	can	be	used	to	define	the	machine‐cell	combination.	Eq.	13	is	used	to	ensure	that	the	
quantity	of	machine	m	is	assigned	to	worker	g	in	cell	k.	Eq.	14	and	Eq.	15	express	the	time	capac‐
ity	of	the	worker.	Eq.	16	and	Eq.	17	express	the	time	capacity	of	the	machine.	Eq.	18	ensures	that	
the	 upper	whole	 number	 of	machine	m	 is	 assigned	 to	worker	g.	 Eq.	 19	 ensures	 that	 a	 lower	
whole	number	of	machine	m	is	assigned	to	worker	g.	Eq.	20	and	Eq.	21	express	the	cost	of	a	pro‐
duction	per	cycle	 from	one	machine	 in	 the	 lower	and	upper	whole	numbers	of	machine	m	 as‐
signed	to	worker	g.	Eq.	22	to	Eq.	24	guarantee	that	the	lowest	ܶܥ	is	chosen.	Eq.	25	represents	
the	tool‐machine	combinations.	Eq.	26	expresses	the	operation‐part‐machine‐cell	combinations.	
Eq.	27	and	Eq.	28	can	be	used	to	define	the	type	of	variables.	

3. Used methods
In	the	present	paper,	in	order	to	solve	the	presented	CF	model,	a	GA	is	implemented	and	three	
DE,	PSO	and	HS	algorithms	are	employed	to	the	obtained	accredit	outcome.	

3.1 Genetic algorithm 

Holland	[24]	was	the	first	to	develop	the	GA,	which	represented	coding	to	a	chromosome	form.	
Subsequent	to	the	production	of	the	first	random	chromosomes,	evaluation	of	performance	was	
undertaken	 using	 the	 fitness	 function.	 The	 remaining	 chromosomes	 and	 offspring	 produce	 a	
generation	 through	 the	medium	 of	 crossover	 and	mutation.	 In	 the	 end,	 the	 elitism	 process	 is	
used	to	produce	solutions	[25].	The	GA	used	for	the	CF	framework	is	as	follows.	Two	elements	
are	given	in	the	CF	problem.	The	first	element	represents	the	assignment	of	machines	to	work‐
ers	using	[Ma_Wo].	This	matrix	is	utilized	to	define	the	entirety	of	the	relative	constraints.	The	
second	element	 represents	 an	operation‐part‐machine‐cell‐tool‐worker	 [OP_Pa_N3],	where	N3	
equals	[Ma_Ce_To_Wo].	These	matrices	are	employed	to	define	the	entirety	of	the	relative	con‐
straints.

3.2 Differential evolution 

The	DE	algorithm	represents	a	recent	evolutionary	optimization	technique	for	continuous	non‐
linear	 functions	 introduced	 by	 Noktehdan	 et	 al.	 [26]	 and	 Storn	 and	 Price	 [27].	 The	 principal	
stages	involved	in	the	DE	algorithm	are	defined	as	follows.	Initially,	a	random	population	gener‐
ation	is	formed	and	the	objective	function	is	evaluated.	For	each	individual	solution	in	the	popu‐
lation,	a	mutated	solution	ݔపෝ 	is	produced	as	follows	in	Eq.	29.	

పෝݔ ൌ ଵݔ  ଷݔሺܨ െ 	ଶሻݔ (29)

where	F	represents	a	scalar	(F	∈	[0,	1]),	and	ݔଵ, ,ଷݔ 	in	subjects	randomly‐selected	represent	ଶݔ
the	population	i	(ݔపෝ ് ଵݔ ് ଷݔ ് 	trial	a	establish	to	employed	is	operation	crossover	The	ଶ).ݔ
vector	 through	 shuffling	 the	 information	 incorporated	 in	 the	mutated	 vector	 and	 the	 current	
solution	in	Eq.	30. 		

ݕ
 ൌ 	 ොݔ

	for	 ܴ  ݕ	and		ܴܥ
 ൌ ݔ

	for	 ܴ  ܴܥ (30)

where	CR	represents	the	crossover	rate	∈	[0,	1],	which	needs	to	be	specified	by	the	user,	and	 ܴ	
represents	a	random	real	number	∈	[0,1]	and	j	is	the	j‐th	parameter.	A	comparison	is	made	be‐
tween	each	trial	vector	(ݕపሬሬሬԦ	)	and	its	parent	(ݔపሬሬሬԦ	),	and	the	more	desirable	one	remains	in	the	popu‐
lation	in	the	selection	stage	[28].			

3.3 Particle swarm optimization 

The	PSO	 algorithm	 represents	 a	 population‐based	 stochastic	 optimization	 algorithm	 extended	
by	Kennedy	 and	Eberhart	 [29]	 composed	of	 a	 population	 (i.e.,	 swarm)	 of	 candidate	 solutions,	
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referred	 to	 as	 particles,	which	 are	 in	 inward	motion	 towards	 search	 space	with	 a	 designated	
velocity	in	search	of	an	optimum	solution.	Each	particle	maintains	a	memory	assisting	it	in	pre‐
serving	the	path	taken	by	its	previous	best	location.	The	particle	positions	are	identified	as	per‐
sonal	best	and	global	best.	The	principal	iterative	process	to	arrive	at	the	solution	is	executed	by:	

ݔ
ାଵ ൌ ݔ

  ݒ
ାଵ	 (31)

ݒ
ାଵ ൌ ݒݓ

  ݐݏ݁ܤଵ൫ܲ݀݊ܽݎଵܥ െ ݔ
൯  ଶ൫݀݊ܽݎଶܥ ܲ െ ݔ

൯ (32)

Eq.	31	is	used	to	calculate	the	i‐th	particle	movement	in	the	k‐th	replication,	where	ݒ
, ݔ

	repre‐
sent	the	velocity	and	the	current	location	of	the	i‐th	particle	in	the	k‐th	replication,	respectively.	
Eq.	32	is	employed	to	calculate	the	latest	velocity	vector	of	the	i‐th	particle	in	the	k‐th	iteration,	
	controlling	factor	inertia	the	represents	w	particle,	i‐th	the	of	location	best	the	represents	ݐݏ݁ܤܲ
the	magnitude	of	the	old	velocity,	ܥଵ	and	ܥଶ	represent	acceleration	constants	(i.e.,	cognitive	and	
social)	based	on	the	kind	of	search,	 local	and	global	 ܲ	are	denoted	݈ݐݏ݁ܤ	and	݃ݐݏ݁ܤ,	respec‐
tively	[30].	

3.4 Harmony search 

Musical	performance	can	be	defined	as	the	quest	for	the	lovely	harmony	among	all	harmonies.	
Geem	 et	 al.	 [31]	 introduced	 an	 optimization	 algorithm	 on	 the	 basis	 of	 musical	 performance,	
known	as	HS,	 searching	 for	 the	best	 solution	emanating	 from	the	objective	 function.	The	algo‐
rithm	 starts	 by	 playing	 a	 new	 harmony	 and	 comparing	 this	 harmony	with	 those	 in	 harmony	
memory	(HM),	which	results	in	the	improvement	in	the	harmony	quality	in	a	step‐by‐step	man‐
ner.	Subsequently,	 the	HM	updates	and	verifies	 the	stop	criterion.	The	entirety	of	 the	decision	
variables	(notes)	in	HM	together	with	the	values	for	these	notes	in	the	new	harmony	are	deter‐
mined	 in	 the	 following	manner:	 first,	 precise	 choice	of	 the	HM	domain	 value.	 Second,	 random	
selection	of	the	full	value	domain	using	a	selection	rate	or	the	harmony	memory	considering	rate	
(HMCR)	between	zero	and	one.	Third,	selection	of	ideal	identical	values	for	the	HM	domain	with	
the	pitch	adjustment	rate	(PAR)	between	zero	and	one	and	a	free	distance	bandwidth	(Bw)	[32].		

4. Results and discussion

To	 investigate	 and	 evaluate	 the	 performance	 of	 the	 four	meta‐heuristic	 algorithms	 on	 the	 CF,	
some	 randomly‐selected	 numerical	 examples	 are	 produced.	 To	 solve	 the	 proposed	 model,	
MATLAB	 (R2016b)	 software	 is	utilized	 to	provide	 the	 code	 the	algorithms	on	 a	 laptop	having	
five	Intel	Core	i5	CPU	and	2	GB	RAM.	The	TM	is	run	in	MINITAB	software	version	17.3.1	to	cali‐
brate	the	parameters	for	a	subsequent	data	analysis. 

4.1 Defuzzification of T2F variable   

The	energy	price	coefficient	in	the	fourth	sentence	of	the	objective	function	ranges	between	4	to	
8. The	coefficient	is	represented	by	the	following	discrete	T2F	variable.

Eܥ෪ ൌ ቐ
3 							with ෪ܥܧߤ 	ሺ3ሻ ൌ ሺ0.1, 0.4, 0.7ሻ
4 with ෪ܥܧߤ 	ሺ4ሻ ൌ ሺ0.9, 1, 1ሻ
5 				with ෪ܥܧߤ 	ሺ5ሻ ൌ ሺ0.1, 0.3, 0.4,0.6ሻ

	 Eܥ෪ ൌ ቐ
7 with ෪ܥܧߤ 	ሺ7ሻ ൌ ሺ0.4, 0.5, 0.7,0.8ሻ
8 with ෪ܥܧߤ 	ሺ8ሻ ൌ ሺ0.6, 0.8, 0.9ሻ
10 with ෪ܥܧߤ 	ሺ10ሻ ൌ ሺ0.4, 0.6, 0.7ሻ

	

To	solve	the	CF	model	under	consideration	in	the	initial	step,	a	CV	reduction	method	is	employed	
to	convert	the	energy	price	T2F	variable	in	unit	time	to	the	corresponding	type‐1	fuzzy	variable.	
During	the	second	step,	a	centroid	method	 is	performed	to	reduce	the	type‐1	 fuzzy	variable	 to	
the	crisp	value.	The	energy	price	crisp	value	is	obtained	using	ܥܧ ൌ ሺ3.99,	8.35).	
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4.2 Generating random data 

15	random	examples	are	produced	in	various	sizes	through	the	generation	of	uniformly	distrib‐
uted	random	points	for	a	number	of	parameters	given.	The	attributes	of	15	designed	test	exam‐
ples	are	shown	in	Table	2.	Also,	Table	3	shows	the	components	of	the	model	input	parameters	
required	for	15	problem	instances.	

Table	2 Attribute	of	test	examples	
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1	 2	 2	 4	 2	 2 4	 6	 5 5 3 2 3 3 11 7 2	 5	 2	 3 5
2	 2	 4	 5	 2	 2 5	 7	 6 3 4 3 3 4 12 7 5	 3	 4	 3 3
3	 4	 4	 2	 3	 3 2	 8	 6 5 3 4 4 3 13 8 2	 3	 2	 3 3
4	 4	 5	 4	 3	 3 4	 9	 6 3 5 3 3 5 14 8 5	 4	 2	 2 4
5	 5	 5	 2	 3	 2 2	 10	 7 3 4 3 2 4 15 8 5	 4	 3	 3 4

Table	3	Data	identifying	with	random	test	problems	
Parameter Amount Parameter Amount Parameter Amount Parameter Amount

ܳ ܷሺ100 െ 500ሻ Eܥ෪ ܷሺ3.99 െ 8.35ሻ ܶ, ܶ 55  ܷሺ9ܥ െ 20ሻ

௧ ܷሺ5݄ܿݐܽܤ െ 10ሻ ௧ߙ ܷሺ10 െ 30ሻ ݎ 0.02 ݏ 0.01

௧ ܷሺ10݄ܿݐܽܤ െ 15ሻ ௧ߙ ܷሺ50 െ 75ሻ ݓ 0 ଵ ܷሺ1ܥ െ 2ሻ

߮ ܷሺ0.5 െ 0.7ሻ ߛ ܷሺ50 െ 80ሻ ଶܥ ܷሺ2 െ 3ሻ ݂ܶ݁݅ܮ݈ 1

4.3 Parameter calibration 

The	TM	is	used	to	calibrate	the	parameters	in	the	GA,	DE,	PSO	and	HS	algorithms,	as	the	values	of	
meta‐heuristic	 algorithm	 parameters	 influence	 the	 solution	 quality.	 Nevertheless,	 the	 present	
study,	the	“smaller	is	better”	response	is	chosen	as	S/N	should	be	minimized [25].	To	perform	
the	Taguchi	procedure,	the	L^9	design	is	employed	with	the	values	and	levels	of	the	GA,	DE,	PSO	
and	HS	algorithm	parameters	outlined	in	Table	4	and	the	values	derived	after	multiple	tests	on	
the	examples	of	the	classes	using	the	frequent	algorithm	runs.	

Table	4	GA,	DE,	PSO	and	HS	parameters,	and	levels	
Algorithm	 Parameters (1)	 (2) (3) Algorithm Parameters (1)	 (2)	 (3)

POP	 30	 40 50 NOP 30	 40	 50
GA	 Pc	 0.5	 0.6 0.7 PSO C1 1.5	 2	 2.5

Pm	 0.01	 0.05 0.1 C2 1.5	 2	 2.5
NOG	 100	 200 300 NOG 100	 150	 200
NOP	 20	 30 50 HMS 5	 10	 20

DE	 NOG	 30	 50 100 HS HMCR 0.9	 0.95	 0.99
Pc	 0.1	 0.5 0.9 PAR 0.01	 0.1	 0.3
‐ ‐ ‐	 ‐ BW 0.1	 0.5	 0.9

4.4 Analysis of results and comparisons 

To	compare	the	results	emanating	from	four	algorithms	and	elicit	the	best	methodology	to	solve	
the	CF	having	 the	T2F	variable,	 each	of	 15	 examples,	 is	 solved	using	MATLAB	 (R2016b)	 soft‐
ware.	 In	 this	 paper,	 the	GA,	 PSO,	HS	 and	DE	 algorithms	 are	 used,	 in	which	 the	 probability	 of	
crossover	(Pc),	the	generations	number	(NOG),	the	probability	of	mutation	(Pm)	and	the	size	of	
population	(POP)	are	the	GA	parameters.	The	generations	number	(NOG),	the	acceleration	coef‐
ficients	(C1,	C2)	and	the	size	of	population	(NOP)	are	the	PSO	parameters.	The	harmony	memory	
considering	rate	(HMCR),	the	Bandwidth	(BW),	the	harmony	memory	size	(HMS)	and	the	pitch	
adjusting	 rate	 (PAR)	 are	 the	 HS	 parameters.	 The	 size	 of	 population	 (NOP),	 the	 probability	 of	
crossover	(Pc)	and	the	generations	number	(NOG)	are	the	DE	parameters.		

Tables	5	and	6	incorporates	the	input	parameter	and	the	objective	values	of	four	algorithms	
in	each	example,	in	which	the	optimal	values	of	the	parameters	are	derived	using	L^9	design	and	
the	TM.	To	compare	the	performance	of	the	GA,	PSO,	HS,	and	DE	with	reference	to	the	objective	
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function,	a	number	of	approaches	are	utilized	in	the	present	research.	Initially,	the	average	and	
the	standard	deviation	of	each	of	the	15	examples	were	obtained	as	shown	in	the	last	two	rows	
in	Table	6.	The	results	from	average	and	standard	deviation	of	the	15	examples	show	that	PSO	
has	outperformed	GA,	HS,	and	DE.	The	graphical	approach	depicted	in	Fig.	1	is	also	applied	twice	
to	compare	 the	algorithm	performance	 in	15	produced	examples.	Moreover,	 this	 figure	shows	
that	the	PSO	appears	to	represent	a	better	performance	than	the	GA,	HS,	and	DE	in	the	objective	
function	in	the	entirety	of	the	examples.	

Table	5	Input	parameters	of	the	PSO,	FA	and	DE	algorithms	for	the	generated	problems	
HS PSO GA DE

Prob.	No.	 HMS	 HMCR PAR	 BW	 NOP ଵܥ ଶܥ NOG POP ܲ ܲ NOG	 NOP	 NOG ܲ

1	 20	 0.99 0.3	 0.9	 30 2 2 100 50 0.6 0.01 200	 50	 100 0.9
2	 20	 0.99 0.3	 0.5	 50 25 2 200 50 0.5 0.05 100	 30	 30 0.9
3	 10	 0.95 0.01	 0.9	 50 1.5 2 100 50 0.6 0.05 300	 50	 100 0.9
4	 10	 0.95 0.01	 0.9	 40 1.5 2.5 200 30 0.7 0.1 300	 30	 30 0.9
5	 10	 0.99 0.3	 0.9	 40 1.5 1.5 100 40 0.7 0.05 200	 50	 50 0.1
6	 20	 0.95 0.1	 0.5	 30 2 2 200 30 0.5 0.01 200	 30	 100 0.1
7	 5	 0.99 0.01	 0.1	 30 2 2.5 150 50 0.7 0.1 300	 30	 100 0.1
8	 20	 0.95 0.01	 0.5	 40 1.5 1.5 200 50 0.7 0.1 300	 30	 50 0.1
9	 20	 0.9	 0.01	 0.1	 30 1.5 2.5 150 30 0.6 0.01 200	 50	 100 0.1
10	 20	 0.99 0.01	 0.9	 40 2 2.5 200 40 0.6 0.05 200	 20	 100 0.1
11	 20	 0.95 0.3	 0.9	 50 2 1.5 200 30 0.6 0.1 100	 30	 30 0.1
12	 20	 0.95 0.01	 0.1	 50 1.5 2 200 50 0.6 0.01 200	 50	 100 0.9
13	 20	 0.95 0.3	 0.9	 50 2 1.5 200 50 0.7 0.05 300	 50	 50 0.1
14	 10	 0.9	 0.1	 0.5	 30 2 2 150 30 0.6 0.05 300	 20	 30 0.1
15  5	 0.99 0.1	 0.5	 40 1.5 1.5 100 30 0.6 0.1 300	 30	 100 0.9

Table	6	Objective	function	of	the	PSO,	FA	and	DE	algorithms	for	the	generated	problems	
Problem	No.	 HS	 

Objective	function	
PSO

Objective	function	
GA

Objective	function	
DE	

Objective	function	
1	 11579	 11449 17874 12530
2	 49371	 34946 55498 53765
3	 61232	 59110 64833 63498
4	 112440	 89216 123982 119870
5	 134230	 100420 143563 139110
6	 114140	 101930 129390 128765
7	 99366	 71208 101550 99875
8	 127030	 126750 148510 144170
9	 106320	 105770 110289 107540
10	 112430	 109290 115410 113980
11	 41477	 37906 61187 49405
12	 215630	 214010 265670 231720
13	 78911	 70402 86832 84695
14	 221480	 175750 240290 238730
15  221080	 220720 247720 225775

Average	 113781	 101925 127507 120895
St.	Dev	 64446	 61827 73328 68000

Fig.	1	Trend	of	the	objective	function	values	of	the	generated	problems	for	the	proposed	algorithms	
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Table	7	Analysis	of	variance	results	to	compare	the	algorithms	in	terms	of	mean	objective	function	value	
Source	 DF	 Adj.	SS Adj.	MS F‐Value	 P‐value
Algorithms	 3	 5390788752 1796929584 0.40 0.754	
Error	 56	 2.51675E+11 4494189326
Total	 59	 2.57065E+11

Fig.	2	Boxplot	of	the	total	cost	values

In	the	end,	the	one‐way	analysis	of	variance	(ANOVA)	method	is	employed	to	statistically	evalu‐
ate	the	performance	of	the	GA,	PSO,	HS,	and	DE.	This	procedure	was	executed	in	MINITAB	soft‐
ware	version	17.3.1.	The	ANOVA	method	output	outlined	in	Table	7	demonstrates	that	at	a	con‐
fidence	 level	 of	 95	%,	 four	 algorithms	 reveal	 no	 significant	 differences	 in	 the	mean	 objective	
function.	Fig.	2	outlines	the	respective	performance	of	the	four	algorithms.		

5. Conclusion

In	this	paper,	a	T2F	CF	problem	was	examined	with	economic	and	environmental	criteria.	In	the	
proposed	model,	the	costs	associated	with	processing,	material	movement,	energy	loss,	and	tool‐
ing	were	minimized.	The	most	salient	benefits	of	the	mathematical	model	are	as	follows:	CF	us‐
ing	 economic	 and	 environmental	 criteria	 at	 desirable	 cost	 defined	by	T2F	 and	worker	 assign‐
ment	through	the	man‐machine	relationship	aspect.	To	solve	the	presented	CF	model,	a	GA	was	
utilized,	in	which	the	PSO,	HS,	and	DE	algorithms	were	employed	to	evaluate	the	outputs	of	the	
proposed	algorithm.	Another	remarkable	advantage	of	the	present	research	is	the	solution	of	the	
15	random	problems	produced	as	 the	optimal	rates	of	 the	algorithm	parameters	using	TM	for	
each	problem.	The	results	emanating	from	the	algorithms	reveal	that	the	PSO	algorithm	outper‐
forms	the	GA,	DE,	and	HS	algorithms	in	terms	of	the	objective	function	on	15	random	produced	
problems.	The	ANOVA	method	was	also	conducted	to	compare	the	performance	of	the	GA,	PSO,	
HS	and	DE	algorithms	statistically.	Moreover,	the	trend	pattern	demonstrated	that	PSO	outper‐
formed	GA,	DE,	and	HS	in	the	majority	of	the	problems,	in	which	a	statistically	significant	differ‐
ence	was	not	observed	showing	 that	valid	 results	were	derived	using	 the	PSO.	 In	 the	end,	 the	
following	recommendations	for	further	research	are	made:	

 The	application	of	the	model	can	be	extended	to	a	stochastic	environment.
 The	proposed	model	can	be	considered	with	reference	to	other	criteria	for	sustainability.
 The	proposed	model	may	be	considered	in	the	multi‐period	planning	horizon.
 The	Response	Surface	Methodology	(RSM)	may	be	implemented	to	set	the	parameters.
 Future	research	can	concentrate	on	other	meta‐heuristic	algorithms.
 The	model	can	be	extended	to	other	T2F	parameters.
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