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A B S T R A C T	   A R T I C L E   I N F O	

Complex	 repairable	 systems	with	 bathtub‐shaped	 failure	 intensity	will	 nor‐
mally	go	 through	 three	periods	 in	 the	 lifecycle,	which	requires	maintenance	
policies	and	management	decisions	accordingly.	Therefore,	the	accurate	esti‐
mation	of	change	points	of	different	periods	has	great	significance.	This	paper	
addresses	 the	 challenge	 of	 change‐point	 estimation	 in	 failure	 processes	 for	
repairable	systems,	especially	for	sustained	and	gradual	processes	of	change.	
The	 paper	 proposes	 a	 sectional	model	 composed	 of	 two	 non‐homogeneous	
Poisson	processes	 (NHPPs)	 to	describe	 the	bathtub‐shaped	 failure	 intensity.	
In	order	to	obtain	the	accurate	change‐point	estimator,	a	novel	hybrid	method	
is	developed	combining	bootstrap	control	charts	with	the	sequential	cluster‐
ing	 approach.	Through	Monte	Carlo	 simulations,	 the	proposed	 change‐point	
estimation	method	is	compared	with	two	powerful	estimation	procedures	in	
various	 conditions.	 The	 results	 suggest	 that	 the	proposed	method	performs	
effective	and	satisfactory	for	failure	processes	with	no	limits	of	distributions,	
changing	 ranges	 and	 sampling	 schemes.	 It	 especially	 provides	 higher	 preci‐
sion	and	lower	uncertainty	in	detecting	small	shifts	of	change.	Finally,	a	case	
study	analysing	real	failure	data	from	a	heavy‐duty	CNC	machine	tool	is	pre‐
sented.	 The	 parameters	 of	 the	 proposed	 NHPP	 model	 are	 estimated.	 The	
change	point	of	the	early	failure	period	and	the	random	failure	period	is	also	
calculated.	These	 findings	can	contribute	 to	determining	the	burn‐in	 time	 in	
order	to	improve	the	reliability	of	the	machine	tool.	
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1. Introduction 

In	lifecycle	reliability	analysis,	the	failure	patterns	of	complex	repairable	systems	can	be	general‐
ly	categorised	as	early	failure	period,	random	failure	period	and	wear‐out	failure	period,	which	
have	 various	 failure	mechanisms	 and	 performances.	 The	 failure	 intensity	 during	 the	 lifecycle	
usually	 follows	 a	 bathtub‐shaped	 curve	 in	 practice.	Monitoring	 the	 changing	 trend	 and	deter‐
mining	the	change	point	for	different	periods	will	provide	reasonable	guidance	for	health	man‐
agement	and	decision‐making	in	time,	such	as	early	failure	elimination	experiment,	maintenance	
strategy,	etc.,	which	also	enables	the	improvement	of	reliability	and	efficiency.		

Statistical	 process	 control	 (SPC)	 charts	 have	 been	 widely	 used	 in	 the	 process	 monitoring.	
When	a	signal	 is	detected	to	be	out‐of‐control,	 it	may	 indicate	a	sudden	change	 in	quality	or	a	
transition	 from	one	state	 to	 the	next.	Therefore,	engineers	could	be	 initiated	to	 trace	back	the	
cause	 based	 on	 the	 signal	 and	make	 appropriate	 adjustments	 in	 time.	Many	 researches	 have	
been	done	for	change‐point	estimation	considering	various	change	patterns	in	multivariate	en‐
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vironment	based	on	SPC	theory.	Amiri	and	Allahyari	[1]	made	a	literature	review	for	the	existing	
methods	to	detect	the	real	time	of	change	in	control	charts.	Pignatiello	and	Samuel	[2]	adopted	
the	maximum	likelihood	estimator	(MLE)	for	a	step	change	in	CUSUM	and	EWMA	control	charts.	
Perry	et	al.	[3,	4]	considered	various	quality	characteristics	for	change	point	estimation	of	differ‐
ent	 change	 types	 involving	 linear	 trend	 and	monotonic	 change.	 Unknown‐parameter	 change‐
point	models	were	also	defined	for	identifying	changes	in	multivariate	process	[5‐7].		

In	addition	to	these	traditional	approaches,	artificial	neural	network	(ANN),	clustering	tech‐
niques	and	other	learning	based	methods	have	been	combined	with	SPC	charts	for	monitoring	of	
complicated	 systems	 [8].	 As	 for	 ANN	methods,	 Amiri	 et	al.	 [9]	 developed	 a	 probabilistic	 ANN	
procedure	 to	 estimate	 the	 change	 points	 of	 quality	 characteristics	 following	 normal	 distribu‐
tions.	Ahmadzadeh	et	al.	[10,	11]	combined	ANN	with	multivariate	exponentially	weighted	mov‐
ing	average	(MEWMA)	control	charts	to	estimate	the	actual	change	points	 in	multivariate	pro‐
cess.	Maleki	 et	al.	 [12]	 proposed	 an	ANN‐based	model	 to	 detect	 step	 changes	 considering	 the	
correlation	 between	multivariate	 or	 attribute	 quality	 characteristics.	 Change	 point	 estimators	
were	 also	 identified	 based	 on	 ANN	 in	 five	 change	 patterns	 [13].	When	 it	 comes	 to	 clustering	
techniques,	fuzzy‐statistical	clustering	approach	was	adopted	to	estimate	change	points	in	vari‐
ous	 control	 charts	with	 fixed	 or	 variable	 sample	 sizes	 [14,	 15].	 The	 step	 change,	 linear	 trend	
change	and	monotonic	change	are	identified	using	clustering	approach	by	[16‐18],	respectively.	
Other	 learning	based	methods,	 such	as	 support	vector	machines,	have	also	been	 incorporated	
into	SPC	to	solve	the	change‐point	estimation	problems	[19,	20].	

Despite	the	literature	has	paid	large	attention	to	the	SPC	methods	applying	to	change‐point	de‐
tection	in	quality	monitoring,	they	are	mostly	designed	for	identifying	step	changes	in	the	pro‐
cess	with	a	specific	distribution.	The	study	of	change‐point	estimation	in	reliability	monitoring	is	
rarely	considered,	especially	for	the	failure	processes	of	complex	repairable	systems.	Consider‐
ing	the	characteristics	of	complex	repairable	systems,	the	study	of	this	problem	is	unique	in	that:	

 Due	to	the	long	life	cycle	and	high	reliability,	the	sample	size	of	failure	data	is	usually	very	
small.	The	historical	data	that	can	be	used	for	reference	are	also	not	good	enough	owing	to	
different	operating	environments	and	failure	mechanisms.	

 The	failure	process	always	consists	of	multiple	periods.	Accordingly,	 the	real‐time	moni‐
toring	of	 reliability	 is	 essential	 in	order	 to	adjust	maintenance	strategies	 in	 time.	Other‐
wise,	it	may	result	in	decreased	productivity,	increased	cost,	and	even	some	catastrophic	
damage.		

 The	change	pattern	prefers	to	be	identified	as	a	trend	showing	a	bathtub‐shaped	curve	in‐
stead	of	a	step	change.	An	 improved	SPC	chart	 is	required	to	be	sensitive	 to	 the	gradual	
and	sustained	change.		

 Since	the	change	point	simply	detected	from	SPC	charts	could	be	relatively	rough	[10],	a	
change‐point	model	 based	 on	MLE	 can	 be	 developed	 to	 help	 improve	 the	 accuracy	 and	
stability	of	the	estimation.	It	makes	the	existing	SPC	charts	subjected	to	some	specific	dis‐
tribution	not	applicable.	

Therefore,	 the	paper	 first	develops	a	sectional	NHPP	model	 to	describe	the	bathtub‐shaped	
failure	intensity	in	the	lifecycle.	The	model	considers	systems	with	minimal	maintenance	espe‐
cially	subject	to	early	failures,	it	is	able	to	flexibly	fit	time‐ordered	failure	data	in	the	early	failure	
period	 and	 the	 random	 failure	 period.	 Then,	 a	 novel	 hybrid	 estimation	method	 integrating	 a	
bootstrap	control	chart	with	a	sequential	clustering	approach	is	proposed.	The	method	is	supe‐
rior	in	real‐time	monitoring	the	gradual	and	sustained	trend	of	change.	Moreover,	based	on	MLE	
with	 strict	 statistical	 deduction,	 the	 proposed	 change‐point	 estimation	 method	 not	 only	 im‐
proves	the	calculation	efficiency,	but	also	achieves	good	accuracy	even	in	the	case	of	small	sam‐
ples.	

This	paper	 is	 structured	as	 follows.	The	proposed	model	 is	established	 in	Section	2,	whose	
bathtub‐shaped	 failure	 intensity	 function	 is	 also	 discussed	 in	 this	 part.	 The	 following	 section	
integrates	clustering	method	with	SPC	to	explain	the	change‐point	estimation	procedure.	In	Sec‐
tion	4,	the	performance	of	the	proposed	approach	is	assessed	by	a	series	of	simulations,	and	a	
numerical	application	is	presented.	Finally,	conclusions	are	made	in	Section	5.	
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2. The bathtub‐shaped failure intensity model 

An	NHPP	can	be	adopted	to	describe	the	failures	of	complex	repairable	systems	under	minimal	
maintenance	strategy.	The	strategy	assumes	that	maintenance	time	can	be	ignored	and	the	sys‐
tem	will	only	return	to	the	same	state	as	it	was	right	before	the	failure	occurred,	which	is	more	
rational	for	reliability	modelling	of	complex	repairable	systems.	In	practical	work,	maintenance	
actions	often	involve	only	some	parts	of	the	system,	so	the	overall	state	of	the	system	is	not	af‐
fected.	Based	on	this,	our	bathtub‐shaped	failure	intensity	model	is	proposed	under	this	assump‐
tion	and	set	up	from	the	NHPP.	

The	NHPP	is	also	called	the	Weibull	process	[21]	when	it	has	a	failure	intensity	function	as	

߱ሺݐሻ ൌ ,ఉିଵݐߚߣ ݐ ⩾ 0, ߣ  0, ߚ  0	 (1)

where	ߣ	is	the	intensity	parameter,	ߚ	is	the	shape	parameter,	and	ݐ	is	the	operating	time.	
Following	the	NHPP,	the	number	of	failures	during	the	time	interval	ሺݐଵ, 	to	equals	ଶሿݐ

ܹሺݐଵ, ଶሻݐ ൌ ଶሻݐሺܰሺܧ െ ܰሺݐଵሻሻ ൌ න ߱ሺߤሻ݀ߤ
௧మ

௧భ

	 (2)

The	same	can	be	inferred	that	ܹሺ0, ሻݐ ൌ 	failures	of	number	expected	the	represents	ሻሻݐሺܰሺܧ
through	time	interval	ሾ0, 	by	given	is	function	intensity	failure	cumulative	the	thereby	ሿ,ݐ

ܹሺݐሻ ൌ න ߱ሺߤሻ݀ߤ
௧బ


ൌ ఉݐߣ 	 (3)

Then	the	corresponding	reliability	function	is	derived	as	

ܴሺݐሻ ൌ ݁ିఒ௧
ഁ
	 (4)

As	well	as	the	cumulative	density	function	

ሻݐሺܨ ൌ 1 െ ܴሺݐሻ ൌ 1 െ ݁ିఒ௧
ഁ
	 (5)

And	the	probability	density	function	

݂ሺݐሻ ൌ
ሻݐሺܨ݀
ݐ݀

ൌ ߱ሺݐሻܴሺݐሻ ൌ ఉିଵ݁ିఒ௧ݐߚߣ
ഁ
	 (6)

However,	a	single	NHPP	model	can	only	illustrate	the	situation	that	failure	intensity	and	fail‐
ure	time	are	strictly	monotonic,	which	is	unable	to	describe	the	non‐monotonic	trends	of	differ‐
ent	 life	 stages.	 Therefore,	 a	 sectional	model	 of	multiple	NHPPs	 is	 required	 to	 fit	 the	 bathtub‐
shaped	curve	in	order	to	describe	the	rules	of	 failures	in	different	failure	periods,	which	could	
help	to	obtain	the	change	point.	

2.1 Two sectional NHPP model 

Experts	have	developed	various	models	to	describe	complex	and	diverse	data	distributions	[22],	
most	of	them	are	constructed	assuming	that	systems	are	non‐repairable	or	‘repair	as	new'.	It	is	
not	appropriate	for	the	concern	in	our	case.	Based	on	this,	we	propose	a	sectional	model	involv‐
ing	two	NHPPs,	representing	the	early	failure	period	and	the	random	failure	period,	respectively.	

߱ሺݐሻ ൌ ቊ
߱ଵሺݐሻ ൌ ,ఉభିଵݐଵߚଵߣ 0 ⩽ ݐ ൏ ݐ
߱ଶሺݐሻ ൌ ,ఉమିଵݐଶߚଶߣ ݐ ⩽ ݐ ൏ ∞

	 (7)

We	divide	 the	operating	 time	ݐ	of	 equipment	 into	 two	 intervals,	ݐ	on	behalf	 of	 the	division	
point.	Where	ߣଵ,	ߚଵ	denote	the	intensity	parameter	and	the	shape	parameter	of	the	failure	inten‐
sity	 function	 for	 early	 failure	 period,	ߣଶ, 	are	ଶߚ for	 random	 failure	 period,	 when	ߚଵ ൌ 	,ଶߚ the	
model	will	degenerate	into	a	single	NHPP,	that	is	the	reason	ߚଵ ് 	.defined	is	ଶߚ

The	sectional	NHPP	model	has	a	cumulative	failure	intensity	function	with	the	expression		

ܹሺݐሻ ൌ ቊ ଵܹሺݐሻ ൌ ,ఉభݐଵߣ 0 ⩽ ݐ ൏ ݐ
ଶܹሺݐሻ ൌ ఉభݐଵߣ  ఉమݐଶߣ െ ,ఉమݐଶߣ ݐ ⩽ ݐ ൏ ∞

	 (8)
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When	0 ⩽ ݐ ൏ 	,ݐ it	 is	 called	 the	 early	 failure	 period	 with	 the	 cumulative	 failure	 intensity	
ܹሺݐሻ ൌ ଵܹሺݐሻ,	when	ݐ ⩽ ݐ ൏ ∞,	it	is	called	the	random	failure	period	with	the	cumulative	fail‐
ure	 intensity	ܹሺݐሻ ൌ ଶܹሺݐሻ,	 where	 ଵܹሺݐሻ	and	 ଶܹሺݐሻ	are	 two‐parameter	 NHPP	models,	 respec‐
tively.	

2.2 Characterisation of bathtub‐shaped failure intensity 

For	the	failure	intensity	functions	of	the	two	sectional	NHPP	model,	different	values	of	the	shape	
parameter	ߚ	are	used	to	denote	different	periods	of	the	product's	life.	As	shown	in	Fig.	1,	when	
ߚ ൏ 1,	 the	 failure	 intensity	decreases	with	 time	ݐ,	 it	means	 that	 failures	will	happen	more	and	
more	infrequently	with	system	ageing.	When	ߚ  1,	the	failure	intensity	increases	as	ݐ	progress‐
es,	it	means	that	the	failure	rate	will	rise	with	system	ageing.	When	ߚ ൌ 1,	the	failure	intensity	is	
a	constant.	

Accordingly,	 the	cumulative	 failure	 intensity,	which	 is	also	known	as	 the	cumulative	 failure	
number,	has	a	change	pattern	seen	in	Fig.	1.	Through	further	mathematical	derivation,	the	con‐
clusion	agrees	with	the	trend	of	failure	intensity,	it	indicates	that	the	growth	rate	of	cumulative	
failure	number	will	first	reduce	with	time	in	early	failure	period,	when	it	comes	to	random	fail‐
ure	period,	the	growth	rate	will	maintain	a	steady	state,	after	that	it	will	continue	to	rise	during	
wear‐out	failure	period.		

In	view	of	our	proposed	sectional	model,	it	is	aimed	at	describing	the	changing	trend	of	the	
early	failure	period	and	the	random	failure	period.	Through	setting	the	constraints	that	failure	
intensity	and	cumulative	failure	intensity	are	both	continuous	at	ݐ,	the	accurate	change	point	ݐ	
could	be	obtained.	which	is	expressed	as	

൜
߱ଵሺݐሻ ൌ ߱ଶሺݐሻ

ଵܹሺݐሻ ൌ ଶܹሺݐሻ
	 (9)

Substitute	Eq.	7	and	Eq.	8	in	Eq.	9	

ቊ
ఉభିଵݐଵߚଵߣ ൌ ఉమିଵݐଶߚଶߣ

ఉభݐଵߣ ൌ ఉభݐଵߣ  ఉమݐଶߣ െ ఉమݐଶߣ
	 (10)

Since	the	cumulative	failure	intensity	function	is	much	in	evidence	to	be	continuous	at	ݐ	with	
the	sectional	two	NHPP	modeling,	the	change	point	ݐ	can	be	obtained	as	

ݐ ൌ ൬
ଵߚଵߣ
ଶߚଶߣ

൰

ଵ
ఉమିఉభ

	 (11)

At	this	point,	the	bathtub‐shaped	failure	intensity	and	its	change	point	can	be	achieved	with	
our	proposed	sectional	model,	which	can	be	adopted	to	assist	the	failure	process	monitoring.	
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Fig.	1	Bathtub‐shaped	curves	of	the	failure	intensity	and	corresponding	cumulative	failure	number	
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3. Change‐point estimation combined SPC with sequential clustering 

For	the	purpose	of	estimating	the	exact	change	point,	a	specific	bootstrap	control	chart	to	moni‐
tor	the	performance	of	repairable	systems	is	established.	The	objective	is	to	track	possible	tran‐
sition	points	by	detecting	all	out‐of‐control	signals	during	the	 failure	process.	These	candidate	
points	help	to	classify	data	patterns	into	the	two	phases	of	early	failure	period	and	random	fail‐
ure	period,	 respectively. Then,	 the	 clustering	 techniques	are	 adopted	 to	eliminate	 interference	
data	within	out‐of‐control	signals	in	order	to	identify	the	optimum	transition	point.	Finally,	the	
accurate	change	point	can	be	estimated	by	fitting	the	two	sections	of	our	proposed	failure	inten‐
sity	model	with	the	segmented	observation	data.	

The	 proposed	 approach	 integrates	 the	 advantages	 of	 SPC	 method	 and	 clustering	 analysis.	
Considering	the	characteristics	of	SPC,	two	possible	states	are	first	predetermined	as	in‐control	
and	out‐of‐control,	it	will	simplify	the	clustering	model	with	a	known	number	of	clusters.	Mean‐
while,	the	data	is	monitored	in	time	series,	the	order	of	points	are	preserved	for	the	iteration	to	
search	 for	 the	optimal	clusters.	At	 last,	 cluster	settings	will	only	be	examined	when	an	out‐of‐
control	signal	 is	detected.	The	number	of	 iterations	is	dramatically	reduced	to	save	computing	
time.	Therefore,	the	SPC	method	is	beneficial	for	improving	efficiency	for	change‐point	estima‐
tion.	Additionally,	the	intervention	of	sequential	clustering	approach	is	for	benefits	of	lower	in‐
terference	and	better	accuracy,	because	the	SPC	chart	in	this	study	is	required	to	be	more	sensi‐
tive	 to	 sustained	 shifts	 and	 gradual	 changing	 trends	 rather	 than	 sudden	 changes	 or	 random	
noises.	

3.1 The bootstrap control chart 

Traditional	control	charts	[23],	like	standard	Shewhart	charts,	can	only	be	strictly	applied	to	the	
normal	distribution	by	monitoring	the	shifts	of	mean	and	variance.	As	to	those	modified	CUSUM	
charts	and	EWMA	charts	[24],	they	are	always	set	up	for	some	specific	distributions.	In	our	case,	
the	failure	process	is	modelled	with	a	sectional	NHPP,	it's	difficult	to	find	the	applicable	control	
charts	and	corresponding	methods	to	establish	its	control	limits.	Therefore,	a	bootstrap	control	
chart	with	no	limits	of	any	specific	distribution	is	developed.	

The	particular	SPC	chart	 is	established	based	on	Monte	Carlo	simulation	[25],	which	can	be	
implemented	as	the	following	steps	shown	in	Fig.	2.	

Step	1:	Determine	the	stable	values	of	parameter	ߣ௦	and	ߚ௦.	They	can	be	defined	by	experience	
or	MLEs	with	observations	collected	 in	Phase	 I,	which	represents	a	 stable	state	 in	SPC	
theory.	

Step	2:	Generate	bootstrap	 random	variables	ݐଵ, ,ଶݐ … , 	from	ݐ the	NHPP	model	with	parame‐
ters		ߣ௦	and	ߚ௦	in	size	݊.	݊	equals	to	the	data	volume	of	Phase	II,	which	is	the	subsequent	
monitoring	process	based	on	the	estimated	control	 limits.	The	method	from	[26]	is	 im‐
proved	 to	generate	random	variables	of	 failure	 times		ݐଵ, ,ଶݐ … , 	following		ݐ the	NHPP	
sequentially.	

Step	3:	Calculate	the	MLEs	from		ݐଵ, ,ଶݐ … , 	.models	NHPP	the	of	ߚ	and	ߣ	obtain	to		ݐ
Step	4:	Obtain	the	‐quantile	 ܹ	with	 ܹ ൌ ሺെሺ1/ߣሻ	݈݊	ሻଵ/	ఉ,	where		 ܹ	represents	100	‐th	

percentile	of	interest.	
Step	5:	Repeat	 the	 steps	 from	 Step.2	 to	 Step.4	 for	ܤሺܤ  1000ሻ	times	 to	 obtain	ܤ	groups	 of	‐

quantiles.	Order	them	from	the	smallest	to	the	largest	as		 ܹଵ ൏ 	 ܹଶ ൏ ⋯ ൏ 	 ܹ.	Then	
the	centre	line	(CL)	is	yielded	as	a	mathematical	expectation	of	acquired	data,	the	lower	
control	 limit	 (LCL)	 is	 the	݅‐th		‐quantile	 ܹ,	 and	 the	 upper	 control	 limit	 (UCL)	 is	 the	
ሺܤ െ ݅ሻ‐th	value	as	 ܹሺିሻ,	where	݅ ൌ 	,2/ܤߙ representing	 that	 there're	݅	estimators	be‐
yond	the	control	limits.	The	false	alarm	risk	ߙ	indicates	the	probability	when	the	system	
is	diagnosed	to	be	out	of	control	while	it's	actually	in	control.	
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Estimate the parameters λs, βs of the NHPP in 
control (Phase І)

Generate samples ti1, ti2, …, tin from the NHPP with λs, βs, where n is 
the sample size of the monitoring process (Phase ІІ)

Estimate the parameters λi, βi from the 
generated random samples

Calculate the p-quantile Wpi of the failure 
samples of TBF

Order Wp1,Wp2, …, WpB from the smallest to the largest, make αB/2-th 
the LCL, (B-αB/2)-th the UCL

R
e

pe
at

 B
 t
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es

, 

B
≥1

0
00 	

Fig.	2	Procedure	to	establish	the	bootstrap	control	chart	

After	 control	 limits	 are	 obtained,	 the	 bootstrap	 control	 chart	 can	 be	 established	 through	
online	monitoring.	Time	between	failures	(TBF)	observations	are	plotted	after	each	failure,	and	
process	shifts	can	be	detected	under	some	suitable	runs	rules.	

Take	an	instance	as	shown	in	Fig.	3,	we	assume	there	are	200	observations	in	total,	the	first	
100	points	in	Phase	I	are	supposed	to	be	in	control.	Then	the	control	limits,	including	UCL,	LCL	
and	CL,	are	calculated	following	the	steps	from	Step	1	to	Step	5.	When	it's	converted	to	Phase	II,	
the	other	100	points	are	plotted	on	the	established	control	chart,	which	should	have	been	de‐
tected	to	be	out	of	control	as	we	expected.	However,	the	fact	in	Fig.	3	shows	that	several	obser‐
vations	(red	solid	points)	in	Phase	I	are	beyond	the	control	limits,	meanwhile,	a	large	number	of	
observations	(black	solid	points)	in	Phase	II	are	within	the	control	limits.	It	infers	that	the	pro‐
posed	control	chart	has	a	problem	of	random	interference,	the	accuracy	of	detection	will	be	re‐
duced	and	it	would	be	hard	to	determine	which	signal	is	the	optimal	transition	point.	In	view	of	
this	 problem,	 the	 sequential	 clustering	 approach	 is	 introduced	 to	 combine	with	 the	 proposed	
SPC	method.	

3.2 The sequential clustering approach 

The	purpose	of	introducing	clustering	approach	is	to	remove	the	disturbance	in	SPC	and	extract	
the	optimal	point	߬̂,	 it	can	detect	whether	systems	convert	to	another	failure	period	and	divide	
observations	in	two	phases.	

In	the	proposed	sequential	clustering	approach,	two	possible	clusters	are	defined:	for	the	݅‐th	
out‐of‐control	signal	 ܱ ,	all	observations	before	 ܱ	are	classified	to	the	in‐control	cluster,	and	all	
observations	after	 ܱ 	are	automatically	classified	to	the	out‐of‐control	cluster.	In	the	interest	of	
obtaining	the	optimal	transition	point	ො߬,	first	of	all,	the	clustering	model	with	applicable	validity	
indices	is	developed.	Then,	the	objective	function	of	each	cluster	setting	according	to	time	series	
is	examined.	At	last,	the	optimal	transition	point	ො߬	is	obtained	by	optimising	the	objective	func‐
tion.	Two	validity	 indices	and	the	objective	 function	from	[16]	are	illustrated	and	improved	as	
follows.	

Clusters	within	variation	

A	 cluster	within	 variation	 ௪ܸ௧	is	 expressed	 as	 the	distance	between	observations	 and	 their	
cluster	centres,	given	by	ܥ	of	in‐control	cluster	centre	and	ܥ௨௧	of	out‐of‐control	cluster	centre,	
as	shown	in	Fig.	4.	In	consideration	of	Phase	I	and	Phase	II	based	on	the	specific	bootstrap	con‐
trol	chart,	ܥ	in	Phase	I	equals	to	the	in‐control	mean.	ܥ	in	Phase	II	is	substituted	as	the	expec‐
tation	of	the	change‐point	model,	which	is	also	defined	as	the	CL	of	established	control	chart.	

Therefore,	 ௪ܸ௧	in	Phase	I	is	

௪ܸ௧ ൌሺ పܺഥ
ఛ

ୀଵ

െܥሻଶ   ሺ పܺഥ


ୀఛାଵ

െܥ௨௧ሻଶ	 (12)

where	 పܺഥ 	is	the	average	value	of	݅‐th	subgroup	of	observations,	and	
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ܥ ൌ పܺഥ

߬

ఛ

ୀଵ

, ௨௧ܥ ൌ  పܺഥ

݊ െ ߬



ୀఛାଵ

	 (13)

What's	more,	 ௪ܸ௧	in	Phase	II	is	

௪ܸ௧ ൌሺ పܺഥ
ఛ

ୀଵ

െܮܥሻଶ   ሺ పܺഥ


ୀఛାଵ

െܥ௨௧ሻଶ	 (14)

Clusters	between	variation	

A	cluster	between	variation	 is	expressed	as	the	distance	between	cluster	centres	and	the	total	
cluster	 centre	 of	 all	 observations	்ܥ,	 as	 shown	 in	 Fig.	 4.	 Similar	with	 the	 situation	 of	 clusters	
within	variation	 ௪ܸ௧,	்ܥ	is	substituted	as	the	CL	of	bootstrap	control	chart	in	Phase	II,	so	as	to	
obtain	the	expression	of	 ܸ௧௪	in	Phase	I	as	

ܸ௧௪ ൌ ߬ሺܥെ்ܥሻଶ  ሺ݊ െ ߬ሻሺܥ௨௧ െ 	ሻଶ்ܥ (15)

where	்ܥ ൌ ∑ పܺഥ /݊

ୀଵ 	and	 ܸ௧௪	in	Phase	II	is	

ܸ௧௪ ൌ ߬ሺܥെܮܥሻଶ  ሺ݊ െ ߬ሻሺܥ௨௧ െ 	ሻଶܮܥ (16)

	
	

Fig.	3	An	example	of	established	bootstrap	control	chart	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Fig.	4	Illustration	of	clusters	within	and	between	variation	
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validity indices

t > n

Identify the optimal clustering setting 
by minimizing the objective function

Calculate Clusters Total Variation 
as the objective function

Fit the proposed sectional NHPP model 
with in- and out-of- control observations

Obtain the accurate change point 
through maximum likelihood estimation
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approach

MLE

	

Fig.	5 Change‐point	estimation	procedure	
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The	objective	function	

Clusters	 total	 variation	 ௧ܸ௧	is	 defined	 as	 the	 objective	 function.	 It	 integrates	 the	within	 and	
between	variations	for	the	purpose	of	valuating	different	cluster	settings	more	completely	and	
getting	the	optimal	clusters	more	efficiently.	The	objective	function	has	the	expression	as	

௧ܸ௧ ൌ ௪ܸ௧  ܸ௧௪	 (17)

For	the	classification	in	Phase	I,	it	is	derived	from	Eq.	12	and	Eq.	15	

௧ܸ௧ ൌ ሺ పܺഥ
ఛ

ୀଵ

െܥሻଶ   ሺ పܺഥ


ୀఛାଵ

െܥ௨௧ሻଶ െ ߬ሺܥെ்ܥሻଶ  ሺ݊ െ ߬ሻሺܥ௨௧ െ 	ሻଶ்ܥ (18)

What's	more,	for	the	classification	in	Phase	II,	Eq.	14	and	Eq.	16	is	combined	as	

௧ܸ௧ ൌ ሺ పܺഥ
ఛ

ୀଵ

െܮܥሻଶ   ሺ పܺഥ


ୀఛାଵ

െܥ௨௧ሻଶ െ ߬ሺܥെܮܥሻଶ  ሺ݊ െ ߬ሻሺܥ௨௧ െ 	ሻଶܮܥ (19)

To	 find	out	 the	optimal	 transition	point	ො߬	and	 assign	observations	 to	 in‐	 and	out‐of‐control	
clusters,	the	proposed	objective	function	should	be	minimised.	

߬̂ ൌ ݊݅݉݃ݎܽ ௧ܸ௧ሺ߬ሻ	 (20)

3.3 Change‐point estimation procedure 

The	overall	 structure	of	proposed	change‐point	estimation	procedure	 is	summarised	as	Fig.	5.	
First	of	all,	the	bootstrap	SPC	chart	is	constructed,	possible	combinations	of	in‐	and	out‐of‐control	
clusters	are	classified	by	each	out‐of‐control	signal.	Then,	the	sequential	clustering	approach	is	
adopted,	proposed	validity	indices	are	examined	sequentially	for	each	clustering	setting	and	the	
objective	 function	 is	optimised	to	obtain	 the	best	assignment	of	observations.	Finally,	 the	best	
assignment	of	observations	is	used	to	fit	the	proposed	two	sectional	NHPP	model,	the	more	pre‐
cise	change‐point	estimator	could	be	calculated	through	maximum	likelihood	estimation.	

As	 for	 the	part	 of	maximum	 likelihood	 estimation,	 let	݂ሺݐଵ, ,ଶݐ … , ఛොݐ , … , 	denotes	ሻݐ the	 joint	
probability	density	of	failure	times	0 ൏ ଵݐ ൏ ⋯ ൏ ఛොݐ ൏ ⋯ ൏ 	of	number	random	the	is	݊	where	,ݐ
failures.	 Among	 them,ݐଵ, ,ଶݐ … , ఛොݐ 	belong	 to	 the	 optimal	 in‐control	 cluster,	 and	ݐఛො , ,ఛොାଵݐ … , ‐be	ݐ
long	to	the	optimal	out‐of‐control	cluster.	The	joint	probability	density	can	be	constructed	with	a	
failure	intensity	߱ሺݐሻ	in	Eq.	7	and	a	cumulative	failure	intensity	ܹሺݐሻ	in	Eq.	8.	

݂ሺݐଵ, ,ଶݐ … ఛොݐ , … , ሻݐ ൌ

ە
۔

ଵሻఛොෑߚଵߣሺۓ ఉభିଵ݁ିఒభ௧ഓොݐ
ഁభ

ఛො

ୀଵ
, 0 ൏ ଵݐ ൏ ଶݐ ൏ ⋯ ൏ ఛොݐ

ሺߣଶߚଶሻିఛොෑ ఉమିଵ݁ିఒమ௧ݐ
ഁమାఒమ௧బ

ഁమିఒభ௧బ
ഁభ



ୀఛොାଵ
, ఛොݐ ൏ ⋯ ൏ ݐ

	 (21)

The	log‐likelihood	function	can	be	obtained	as	

ln	ሺܮሻ ൌ ߬̂ሺlnߣଵ  lnߚଵሻ  ሺߚଵ െ 1ሻlnݐ

ఛො

ୀଵ

െ ఛොఉభݐଵߣ  ሺ݊ െ ߬̂ሻሺlnߣଶ  lnߚଶሻ

 ሺߚଶ െ 1ሻ  lnݐ

୬

ୀఛොାଵ

െ ఉమݐଶߣ  ఉభݐଵߣఉమെݐଶߣ 	

(22)

Differentiate	 log‐likelihood	 functions	with	respect	 to	ߣଵ,	ߚଵ,	ߣଶ,	ߚଶ,	making	 the	equations	re‐
sult	in	zero,	the	MLEs	of	parameters	will	yield	from	
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ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ
߲ lnሺܮሻ

ଵߣ߲
ൌ

߬̂
ଵߣ
െ ఛොఉభݐ െ ఉభݐ ൌ 0 						

߲ lnሺܮሻ

ଵߚ߲
ൌ

߬̂
ଵߚ
lnݐ െ ఛොఉభݐଵߣ lnሺݐఛොሻ െ ఉభݐଵߣ lnሺݐሻ ൌ 0

ఛො

ୀଵ

								

߲ lnሺܮሻ

ଶߣ߲
ൌ
݊ െ ߬̂
ଶߣ

െ ఉమݐ െ ఉమݐ ൌ 0																																																																

߲ lnሺܮሻ

ଶߚ߲
ൌ
݊ െ ߬̂
ଶߚ

  lnݐ െ ఉమݐଶߣ lnሺݐሻ  ఉమݐଶߣ lnሺݐሻ ൌ 0



ୀఛොାଵ

	 (23)

With	the	constraint	of	Eq.	11	the	MLE	of	change	point	is	obtained	as	

ݐ ൌ ݔܽ݉݃ݎܽ 	ሻݐሺܮ (24)

4. Performance analysis and a case study 

In	this	section,	the	performance	of	the	proposed	change‐point	estimation	approach	is	evaluated	
and	 compared	with	 some	existing	methods	 through	Monte	Carlo	 simulations.	To	demonstrate	
feasibility	and	accuracy	in	industrial	applications,	the	proposed	two	sectional	NHPP	model	with	
the	estimation	process	is	applied	to	analyse	the	field	data	of	a	heavy‐duty	CNC	machine	tool.	

4.1 Performance comparison of the proposed approach with existing estimation procedures 

Three	 series	 of	 simulations	 considering	phases	 I	 and	 II	 of	 different	distributions	with	 various	
changing	shifts	are	conducted.	In	these	simulations,	the	evaluation	results	of	the	proposed	objec‐
tive	function	are	compared	with	the	results	of	methods	in	[16,	27].	

The	scheme	of	simulation	study	is	constructed	as	follows.	

Series	1	simulation	

In	each	simulation	run,	samples	of	size	݉ ൌ 1	are	generated	from	a	normal	distribution	with	ߤ ൌ 0	
and	ߪ ൌ 1	up	 to	 the	 real	 change	point	߬ ൌ 100	for	Phase	 I.	 The	bootstrap	 control	 chart	 is	 con‐
structed	following	the	procedure	in	Section	3.1	with	these	in‐control	samples.	Then,	for	Phase	II,	
with	a	shift	in	ߤ ൌ 0.5, 1, 1.5, 2, 3,	respectively,	samples	are	generated	and	monitored	on	the	es‐
tablished	control	chart.	At	last,	the	proposed	indices	are	calculated	to	estimate	the	change	point.	
For	each	adjusted	parameter,	average	change	point	and	corresponding	standard	error	of	10000	
simulation	runs	are	computed.	The	results	are	tabulated	in	Table	1	with	the	comparing	results	
from	[16,	27].	

Conclusions	can	be	drawn	that	the	proposed	method	along	with	the	other	two	comparative	
methods	 have	 quite	 close	monitoring	 results,	 which	 are	 also	 consistent	 with	 the	 real	 change	
point.	Meanwhile,	with	the	increase	of	the	parameter	adjustment	value,	the	precision	of	the	de‐
termined	 out‐of‐control	 signal	 is	 improved.	 Among	 them,	 Ghazanfari	 et	al.'s	 method	 works	 a	
little	better	than	the	other	two,	especially	for	small	shifts.	Despite	the	proposed	method's	slight‐
ly	 inferior	 performance	with	 the	 change‐point	 estimates,	 it	 is	more	 stable	 and	 the	 results	 ob‐
tained	are	more	accurate	and	reliable	considering	the	much	smaller	standard	errors.	
	

Table	1	Average	change‐point	estimates	and	associated	standard	errors	in	Series	1	simulation	

Method	
Shift	size	

0.5	 1	 1.5	 2	 3	

Samuel	et	al.	[27]	
߬̃	 104.45	 100.39	 99.94	 99.7	 99.61	

	ሺ߬̃ሻ݀ݐݏ 23.07	 7.15	 3.93	 3.71	 3.49	

Ghazanfari	et	al.	[16]	
߬̃	 103.24	 100.15	 99.69	 99.53	 99.33	

	ሺ߬̃ሻ݀ݐݏ 23.28	 7.81	 5.97	 5.45	 5.95	

Proposed	method	
߬̃	 104.59	 102.71	 101.66	 101.33	 101.1	

	ሺ߬̃ሻ݀ݐݏ 17.98	 3.44	 1.44	 0.85	 0.37	
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Series	2	simulation	

In	the	second	series	of	simulation,	generate	samples	of	size	݉ ൌ 1	from	an	Exponential	distribu‐
tion	with	ߣ ൌ 2	as	the	first	100	observations	in	Phase	I.	Then,	define	the	altering	parameters	set	
as	ߣ  ߜሺ	ߜ ൌ 0.5, 1, 1.5, 2, 3ሻ	for	the	next	100	samples.	The	change	point	is	estimated	for	10000	
times	in	the	case	of	each	parameter.	The	results	of	average	change	point	and	standard	error	are	
listed	in	Table	2	to	compare	the	performance	of	three	methods.	

As	given	in	Table	2,	the	performances	of	three	methods	are	essentially	in	agreement	with	Se‐
ries	1	simulation	 for	Normal	distributions.	By	comparing	 the	results,	 it	 illustrates	 that	 the	pro‐
posed	method	performs	best	when	the	shift	size	of	 the	parameter	 is	small,	while	 its	estimated	
change	point	tends	to	be	stable	under	increasing	parameter	adjustments.	

Table	2	Average	change‐point	estimates	and	associated	standard	errors	in	Series	2	simulation	

Method	
Shift	size	

0.5	 1	 1.5	 2	 3	

Samuel	et	al.	[27]	
߬̃	 113.33	 104.69	 102.54	 101.73	 101.05	

	ሺ߬̃ሻ݀ݐݏ 16.81	 6.89	 4.66	 4.02	 2.51	

Ghazanfari	et	al.	[16]	
߬̃	 112.83	 104.51	 102.6	 101.76	 101.02	

	ሺ߬̃ሻ݀ݐݏ 15.97	 6.8	 4.21	 3.81	 3.23	

Proposed	method	
߬̃	 109.15	 104.95	 103.96	 103.64	 103.2	

	ሺ߬̃ሻ݀ݐݏ 13.65	 6.51	 4.97	 4.53	 3.58	

Series	3	simulation	

At	last,	simulations	are	executed	for	the	situation	that	failure	process	following	Normal	distribu‐
tions	with	a	small	amount	of	samples.	Subgroups	of	size	݉ ൌ 4	for	Phase	I	are	generated	from	a	
Normal	 distribution	with	ߤ ൌ 100	and	ߪ ൌ 5	until	 the	 real	 change	 point		߬ ൌ 10.	 Then	 from	an‐
other	Normal	distribution	with	a	shift	in	ߤ	as	ߤ ൌ ߤ	  ߪ ൈ ߜሺ	ߜ ൌ 0.5, 1, 1.5, 2, 3ሻ,	samples	with	a	
size	of	10	for	Phase	II	are	generated.	The	simulation	procedure	for	each	parameter	ߤ	is	repeated	
over	10000	times,	and	the	estimated	results	are	compared	with	other	methods	[16,	27]	in	Table	3.	

The	 simulation	 considers	 the	 situation	when	 there	 is	 no	 sufficient	 amount	of	 observations.	
We	can	 tell	 from	the	results	 that	our	proposed	method	still	behaves	well	with	a	 small	 sample	
size	 for	all	 levels	of	alterations.	To	be	more	specific,	 it	 is	more	closed	to	 the	real	change	point	
compared	with	 the	other	 two	methods	 [16,	27]	especially	 for	 small	 shift	 sizes	of	parameter	ߤ.	
Even	if	the	results	for	larger	shift	sizes	are	slightly	rougher	than	the	others,	the	standard	errors	
of	the	proposed	method	are	much	smaller,	which	means	the	performance	is	more	stable	and	the	
obtained	results	are	considerably	consistent.	

Table	3	Average	change‐point	estimates	and	associated	standard	errors	in	Series	3	simulation	

4.2 Numerical application of a heavy‐duty CNC machine tool 

The	case	of	a	heavy‐duty	CNC	machine	tool	 from	some	factory	 is	studied.	The	heavy‐duty	CNC	
machine	 tool	 is	 a	 typical	 kind	 of	 complex	 repairable	 system,	 it	 has	 the	 features	 such	 as	 small	
batch	of	production,	long	service	life,	and	high	maintenance	cost.	Therefore,	the	concern	of	the	
factory	 is	 focused	 on	 ensuring	 the	 reliability	 of	 the	 service	 period	 and	 reducing	maintenance	
cost.	To	achieve	this,	 in	practice	of	engineering,	a	maintenance	policy	of	 ‘minimal	repair'	 is	al‐
ways	 implemented	to	minimize	the	 impact	of	maintenance,	burn‐in	 is	also	a	common	mean	to	
improve	the	reliability	and	maximize	the	useful	life.	

	

Method	
Shift	size	

0.5	 1	 1.5	 2	 3	

Samuel	et	al.	[27]	
߬̃	 13.51	 11.54	 9.76	 10.39	 10.12	

	ሺ߬̃ሻ݀ݐݏ 3.78	 2.37	 1.43	 0.9	 0.39	

Ghazanfari	et	al.	[16]	
߬̃	 10.38	 10.04	 10	 10	 10	

	ሺ߬̃ሻ݀ݐݏ 4.1	 1.56	 0.59	 0.27	 0.05	

Proposed	method	
߬̃	 10	 10.95	 11.02	 11.02	 11	

	ሺ߬̃ሻ݀ݐݏ 3.55	 1.15	 0.43	 0.16	 0.03	
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Table	4	Field	data	of	TTF	and	TBF	of	the	heavy‐duty	CNC	machine	tool	(Unit:	hour)	

No.	 TTF	 TBF	 No.	 TTF	 TBF	 No.	 TTF	 TBF	 No.	 TTF	 TBF	
1	 10	 10	 8	 480.5	 43.5	 15	 747.08	 18.5	 22	 1831.17	 375	
2	 178	 160	 9	 523.5	 38	 16	 848.58	 99.5	 23	 1905.17	 72	
3	 230	 50	 10	 576.5	 50	 17	 919.17	 68.5	 24	 2060.17	 149	
4	 276.5	 44.5	 11	 618.5	 40	 18	 1084.17	 163	 25	 2336.17	 262	
5	 297	 17.5	 12	 649.5	 29	 19	 1227.17	 107.5	 26	 2429.67	 71.5	
6	 385.5	 77	 13	 683	 24.5	 20	 1376.17	 147	 27	 2548.67	 111.5	
7	 435	 42.5	 14	 727.08	 42	 21	 1454.17	 74	 28	 2745.17	 182	

	
Based	on	these	facts,	this	case	study	aims	to	estimate	the	accurate	change	point	of	early	fail‐

ure	 period	 and	 random	 failure	 period	 in	 order	 to	 determine	 the	 optimal	 burn‐in	 time	 of	 the	
product.	 Then	 take	 account	 of	 the	 effect	 of	maintenance	 and	 the	 lack	 of	 failure	data,	 our	pro‐
posed	method	is	particularly	suitable	for	this	situation.	The	field	monitoring	was	conducted	for	
3000	hours	since	it	initially	finished	production	and	came	into	early	failure	testing,	the	time	to	
failure	(TTF)	data	of	the	total	28	failures	were	collected	and	listed	in	Table	4.	

Choose	 TBF	 as	monitoring	 characteristic,	 the	 bootstrap	 control	 chart	 is	 constructed.	 Com‐
pared	with	the	traditional	Weibull	probability	plot,	the	SPC	chart	maintains	a	time	sequence	of	
TBFs	and	realizes	real‐time	condition	monitoring.	As	shown	in	Fig.	6,	basically	the	first	15	data	
are	below	 the	LCL	 ignoring	 the	 randomness	of	 the	observed	point	2	and	point	6,	 it	 illustrates	
that	failures	happened	frequently	and	the	machine	tool	was	still	in	the	early	failure	phase.	After	
the	15th	data,	observations	mainly	kept	stable	around	the	CL	with	no	signal	outside	the	control	
limit,	which	is	 interpreted	as	the	state	converted	 into	the	random	phase	with	stable	 failure	in‐
tensity.		

However,	 the	 error	 caused	 by	 unsteadiness	 and	 uncertainty	 of	 samples,	 such	 as	 a	 sudden	
change	at	point	2	and	point	6,	may	affect	the	accuracy	and	reliability	of	SPC	monitoring.	Then	the	
sequential	clustering	approach	is	adopted	to	obtain	the	accurate	transition	point	for	the	optimal	
clustering	setting.	Following	the	procedure	in	Section	3.2,	the	validity	indices	are	calculated	each	
time	when	the	observation	is	above	the	LCL,	and	the	proposed	objective	function	turns	out	to	be	
minimized	at	point	17,	which	has	been	marked	with	a	red	circle	in	Fig.	6.	

As	 a	 result,	 the	 observations	 are	 divided	 into	 two	optimal	 groups	 taking	 17th	point	 as	 the	
boundary.	 Substitute	 them	 into	 two	 sections	 of	 the	 proposed	NHPP	model	 as	 Eq.	 21	 and	 the	
MLEs	of	parameters	are	obtained	as	ߣଵ ൌ 0.8045, ଵߚ ൌ 0.3819, ଶߣ ൌ 5.7262 ൈ 10ି, ଶߚ ൌ 1.8648.	

Substitute	the	results	above	in	Eq.	11	to	calculate	the	change	point	ݐ,	which	connects	the	ear‐
ly	failure	period	and	the	random	failure	period.	The	result	is	ݐ ൌ 1.0161 ൈ 10ଷ	݄.	

	

	

Fig.	6	Bootstrap	control	charts	with	the	optimal	clusters	
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Table	5	Definitions	of	goodness‐of‐fit	indices	

Index	 Expression	 Variable	

K‐S	 max	൜ max
ଵஸஸெ

ሺ
݅
ܯ
െ పܷ ሻ , maxଵஸஸெ

ሺ పܷ െ
ሺ݅ െ 1ሻ
ܯ

ሻ ൠ	
	,function	log‐likelihood	The	:ܮ

,ଵݐ ,ଶݐ … 	,times	failure	The	:ݐ

݇: The	number	of	parameters	in	the	model,	

ܯ ൌ ݊ െ 1,	

ߚ ൌ
݊

∑ ln	ሺ
ݐ
ݐ
ሻିଵ

ୀଵ

,	

పܷ ൌ ሺ
௧
௧
ሻఉ, ݅ ൌ 1,⋯ 	.ܯ,

A‐D	 െ
൛∑ ሺ2݅ െ 1ሻሾln	 పܷ  ln	ሺ1 െ ܷெାଵିሻሿ

ெ
ୀଵ ൟ

ܯ
െܯ	

C‐V	
1

ܯ12
ሾ పܷ െ

ሺ2݅ െ 1ሻ

ܯ2
ሿଶ

ெ

ୀଵ

	

AIC	 െ2 lnሺܮሻ  2݇	

Table	6	Comparing	results	of	the	goodness‐of‐fit	test	

Method	 Change	point	 Parameter	estimator	 K‐S	 A‐D	 C‐V	 AIC	

Original	model	 ‐	 (0.0796,	0.7405)	
0.1849	
(0.20)	

1.0727	
(1.33)	

0.2196	
(0.23)	

313.982	

Proposed	model	
Phase	1	(1:17)	 (0.8045,	0.3819)	

0.1502	
(0.28)	

0.3964	
(1.36)	

0.0452	
(0.24)	

191.0966	

Phase	2(18:28)	 (5.7262e‐06,	1.8648)	
0.184	
(0.34)	

0.3928	
(1.39)	

0.0489	
(0.25)	

160.5379	

After	obtaining	the	estimated	change	point	and	parameters	corresponding	to	the	optimal	in‐
control	and	out‐of‐control	clusters,	the	goodness‐of‐fit	test	is	adopted.	The	Kolmogorov‐Smirnov	
(K‐S)	 statistic,	 the	Anderson‐Darling	 (A‐D)	 statistic,	 the	Cramér–von	Mises	 (C‐V)	 statistic,	 and	
the	Akaike	information	criterion	(AIC)	are	used	as	goodness‐of‐fit	indices,	which	are	defined	in	
Table	5.	If	the	calculated	indices	have	smaller	values,	then	the	model	is	accepted	as	a	better	fit‐
ting	result	of	the	data.	The	results	of	the	proposed	two	sectional	NHPP	model	and	the	original	
NHPP	model	are	listed	in	Table	6	for	comparison.	It's	easy	to	tell	that	the	values	of	three	statis‐
tics	and	AIC	of	our	new	model	are	all	smaller	than	the	original	model,	the	results	indicate	that	
our	new	model	together	with	the	change‐point	estimation	approach	can	hence	provide	a	better	
fit	 to	 the	 lifetime	data,	 the	estimated	change	point	of	 the	early	 failure	period	and	 the	 random	
failure	period	results	in	more	consistent	with	the	engineering	practice,	the	practicality	and	accu‐
racy	of	the	proposed	method	are	verified.		

For	 the	 new	products	 just	 involved	 in	manufacturing	work,	 they	 are	more	 sensitive	 to	 the	
early	failures,	and	their	early	phase	in	lifecycle	contains	a	large	proportion	of	failures	as	well,	for	
the	design,	manufacturing	or	assembling	reason.	Burn‐in	is	a	popular	process	to	eliminate	early	
failures	and	improve	the	reliability.	However,	if	the	burn‐in	lasts	too	long,	the	useful	life	of	prod‐
ucts	will	be	 reduced.	Otherwise,	 the	reliability	will	decrease	and	 the	maintenance	cost	will	 in‐
crease.	In	practical	execution,	our	proposed	approach	can	present	a	simple	and	effective	way	to	
detect	 the	changing	 trend	of	 reliability	and	 identify	 the	optimal	burn‐in	 time,	which	will	be	of	
great	value.	

5. Conclusion 

The	 paper	 proposed	 a	 change‐point	 estimation	method	 to	 approximate	 the	 failure	 process	 in	
lifecycle	and	estimated	the	change	points	of	different	failure	periods	for	complex	repairable	sys‐
tems.	In	the	proposed	method,	a	sectional	model	involving	two	NHPP	functions	was	first	devel‐
oped	to	describe	the	bathtub‐shaped	failure	intensity.	Then,	a	bootstrap	SPC	chart	was	proposed	
in	order	to	monitor	changing	trends	of	reliability	and	estimate	the	real	time	of	change	point.	By	
introducing	 a	 sequential	 clustering	 approach	 in	 the	 control	 chart,	 the	 random	 interference	
caused	by	traditional	SPC	is	eliminated	and	the	calculation	efficiency	is	improved.	Three	series	of	
simulation	considering	the	processes	with	different	distributions,	changing	ranges	and	sampling	
schemes	were	conducted.	The	proposed	method	was	proved	to	have	a	considerably	good	per‐


