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A B S T R A C T	   A R T I C L E   I N F O	

The	problems	of	determining	the	order	and	size	of	the	product	batches	in	the	
flow	 shop	 with	multiple	 processors	 (FSMP)	 and	 sequence‐dependent	 setup	
times	are	among	 the	most	difficult	manufacturing	planning	 tasks.	 In	 today's	
environment,	 where	 necessity	 for	 survival	 in	 the	 market	 is	 to	 deliver	 the	
goods	in	time,	it	is	crucial	to	optimize	production	plans.	Inspired	by	real	sec‐
tor	manufacturing	system,	this	paper	demonstrates	the	discrete	event	simula‐
tion	 (DES)	 supported	 by	 the	 genetic	 algorithm	 (GA)	 optimization	 tool.	 The	
main	aim	 is	 to	develop	 the	 simulation	 framework	as	a	 support	 for	 the	daily	
planning	of	manufacturing	with	emphasis	on	determining	the	size	and	entry	
order	 of	 the	 product	 batches	 within	 specific	 requirements.	 Procedures	 are	
developed	within	the	genetic	algorithm,	which	are	implemented	in	Tecnomat‐
ix	Plant	Simulation	 software	package.	A	genetic	 algorithm	was	used	 to	opti‐
mize	 mean	 flow	 time	 (MFT)	 and	 total	 setup	 time	 (TST)	 performance	
measures.	Primary	constraint	for	on‐time	delivery	was	imposed	on	the	model.	
The	research	results	show	that	solutions	are	industrially	applicable	and	pro‐
vide	accurate	information	on	the	batch	size	of	the	defined	products,	as	well	as
a	detailed	schedule	and	timing	of	entry	 into	the	observed	system.	Display	of	
the	solution,	in	a	simple	and	concise	manner,	serves	as	a	tool	for	manufactur‐
ing	operations	planning.	
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1. Introduction 

One	of	the	key	problems	in	operational	planning	of	manufacturing	is	to	determine	the	order	and	
size	of	a	product	batches.	In	today's	environment,	the	solution	to	this	problem	is	a	necessity	for	
survival	in	the	market.	Manufacturing	companies	must	deliver	the	goods	in	time	to	avoid	losses	
and	 ensure	 competitiveness	 where	 activities	 are	 planned	 to	 effectively	 use	 the	 available	 re‐
sources	[1].		
	 This	paper	explores	the	problem	of	determining	the	order	and	size	of	a	product	batches	with	
the	aim	of	developing	the	simulation	framework	as	support	 for	the	daily	planning	of	manufac‐
turing.	The	study	deals	with	the	problem	of	the	real	sector.	
	 FSMP	planning	includes,	among	other	things,	the	order	of	jobs	in	unidirectional	flow	system	
where	at	any	workstation	more	than	one	machine	of	the	same	type	can	be	located.	The	machine	
can	process	at	most	one	job	at	any	given	time.	All	jobs	are	subject	to	priorities	that	limit	them	to	
the	same	processing	order	 throughout	all	processing	stages	 [2].	Each	customer	order	must	be	
processed	in	all	or	some	of	the	workstations.	Special	attention	is	paid	to	the	presence	of	the	se‐
quence‐dependent	setup	times,	the	size	of	the	product	batches	and	the	availability	of	production	
resources	[3].	Setup	time	is	the	time	required	for	the	staff	to	prepare	and	provide	a	job	for	unin‐
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terrupted	work	when	 changing	 the	 operation.	 It	 does	 not	 create	 any	 additional	 value,	 and	 by	
increasing	 the	 number	 of	 setups,	 available	machine	 processing	 time	 is	 consequently	 reduced.	
Reducing	the	available	processing	time	 increases	 the	possibility	of	delays	with	delivery,	which	
every	company	wants	to	avoid.	
	 This	paper	presents	a	discrete	model	of	the	manufacturing	system,	made	using	the	simulation	
package	Tecnomatix	Plant	Simulation.	Using	the	genetic	algorithm	implemented	within	the	sim‐
ulation	package	itself,	 the	problem	of	determining	the	order	and	size	of	the	product	batches	is	
solved.	This	simulation	shows	the	exact	values	of	the	required	parameters	that	are	applicable	to	
any	system	of	that	type.	
	 The	rest	of	the	article	is	organized	as	follows.	A	review	of	relevant	literature	is	presented	in	
the	section	2.	Section	3	introduces	the	formulation	of	the	observed	problem,	as	well	as	an	over‐
view	of	the	development	of	the	simulation	model.	Section	4	shows	the	details	of	the	simulation	
experiments.	Section	5	provides	an	analysis	of	experimental	results.	Finally,	section	6	gives	final	
notes.	

2. Literature review 

Discrete	event	 simulations	 (DES)	are	powerful	and	effective	 tools	 for	 solving	many	real‐world	
problems.	They	are	 also	one	of	 the	most	 commonly	used	 techniques	 for	 analysing	and	under‐
standing	 the	 dynamics	 of	manufacturing	 systems.	 The	proof	 of	 this	 is	 a	 large	 number	 of	 pub‐
lished	scientific	papers	on	this	particular	subject.	Negahban	and	Smith	provided	a	comprehen‐
sive	review	of	discrete	event	simulation	publications	with	a	focus	on	applications	in	manufactur‐
ing,	 including	manufacturing	 operations	 planning	 and	 scheduling	 problems	 [4].	 Another	 com‐
prehensive	 survey	 on	 scheduling	problems,	which	provides	 an	 extensive	 review	of	 about	 500	
papers	that	have	appeared	since	the	mid	of	2006	to	the	end	of	2014,	was	presented	by	Allahver‐
di	[5].	He	introduced	very	significant	classification	and	notation	of	scheduling	problems,	based	
on	shop	ambient,	process	 features,	 setup	conditions	and	performance	measures.	 I.	Ribas	et	al.	
provided	 overarching	 review	 of	 recently	 published	 articles	 about	 the	 problems	 of	 scheduling	
hybrid	flow	shop	(HFS).	The	works	are	divided	into	two	categories	based	on	the	characteristics	
of	the	HFS	and	production	constraints	and	in	view	of	the	proposed	approach	to	problem	solving	
[6].	The	most	important	surveys	of	using	DES	for	solving	flow‐shop	specific	manufacturing	oper‐
ations	planning	and	scheduling	problems	are	reviewed	in	this	section.	
	 Gourgand	et	al.	 [7]	 researched	 scheduling	problems	 in	 two	 and	m	machine	 stochastic	 flow	
shop	with	infinite	buffers.	They	implemented	hybrid	approach,	consisting	of	recursive	heuristics	
or	metaheuristics	 and	 performance	 evaluation	 algorithm.	Makespan,	 used	 for	measuring	 per‐
formance	of	generated	feasible	 job	schedules,	was	computed	using	Markov	chain,	or	estimated	
using	 DES.	 Wang	 et	 al.	 [8]	 used	 genetic	 algorithms	 (GA)	 for	 stochastic	 flow‐shop	 scheduling	
problem.	Their	objective	was	to	avoid	premature	convergence	of	the	GA.	Yang	et	al.	[9]	solved	a	
multi‐attribute	combinatorial	dispatching	(MACD)	decision	problem	in	a	flow	shop	with	multiple	
processors	(FSMP)	environment.	The	same	problem	solved	Azadeh	et	al.	[10].	I.	A.	Chaudhry	and	
M.	 Usman	 used	 a	 genetic	 algorithm	 and	 independent	 spreadsheets	 to	 simultaneously	 solve	
scheduling	problems	and	process	planning	in	a	job	shop	environment	[11].	R.	Meolic	and	Z.	Bre‐
zočnik	proposed	a	new	approach	to	solving	job	shop	scheduling	problems	with	an	emphasis	on	
identifying	feasible	solutions.	The	new	approach	allows	all	schedules	of	relatively	large	systems	
to	be	found	using	the	data	structure,	the	zero‐suppressed	binary	decision	diagrams	[12].	
	 Hendizadeh	 et	al.	 [13]	 considered	 a	 flow	 shop	 scheduling	 problem	of	 a	manufacturing	 cell	
that	contains	families	of	jobs.	Setup	times	are	sequence‐dependent	of	the	families.	To	minimize	
makespan	and	total	flow	time,	the	authors	proposed	multi‐objective	genetic	algorithm	(MOGA).	
The	same	problem	has	been	considered	by	Lin	and	Ying	[14]	using	a	two‐level	multi‐start	simu‐
lated	annealing	(TLMSA).	Lee	[15]	dealt	with	a	problem	of	estimating	order	lead	time	in	hybrid	
flow	shops,	where	orders	arrive	dynamically.	Alfieri	[3]	proposed	the	solution	for	multiple	ob‐
jective	 flow	 shop	 scheduling	 problem	 on	 model	 with	 work	 calendars	 on	 resources,	 multi‐
machine	 stages,	 re‐entrant	 flows,	 external	 operations,	 sequence‐dependent	 setup	 times,	 and	
transfer	product	batches	between	stages.	Dugardin	et	al.	[16]	presented	L‐NSGA	multi‐objective	
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GA	which	uses	the	Lorenz	dominance	relationship	for	a	re‐entrant	hybrid	flow	shop	scheduling	
problem.	 They	 had	 two	 objectives:	maximum	 utilization	 rate	 of	 the	 bottleneck	 and	minimum	
completion	 time.	 Ladhari	 et	al.	 [17]	 researched	 two‐machine	 permutation	 flow	 shop	 problem	
with	the	sequence‐independent	setup	times.	Their	objectives	were	minimizing	the	sum	of	com‐
pletion	 times.	 Ying	 et	 al.	 [18]	 examined	 the	 no‐wait	 flow	 shop	manufacturing	 cell	 scheduling	
problem	(FMCSP)	with	the	sequence‐dependent	family	setup	times	with	makespan	criterion	as	
objective.	Galzina	et	al.	[19]	deal	with	the	flow	shop	scheduling	problem	using	hybrid	fuzzy	logic	
and	 intelligent	 swarm	method.	The	compiled	model	was	 compared	with	 stochastic	algorithms	
for	 assessing	applicability	 to	 general	problems.	Chen	 and	Hao	 [20]	 solved	 the	problem	of	dis‐
tributing	the	flow	shop	by	applying	a	non‐dominated	sorting	genetic	algorithm	(NSGA).	They	use	
it	for	multi‐objective	optimization	of	non‐compact	flow	shops	in	view	of	process	linking.	Yan	et	
al.	used	a	Tabu	search	algorithm	and	particle	swarm	optimization	in	a	two‐stage	semi‐continuous	
flow	shop	to	optimize	the	production	and	distribution	decisions	at	the	same	time	[21].	
	 Liu	et	al.	 [22]	compiled	an	overview	of	different	optimization	approaches	for	solving	manu‐
facturing	planning	and	scheduling	problems.	They	listed	numerous	global	and	local	optimization	
methods,	 along	 with	 application	 examples	 and	 associated	 constraints.	 Frequently	 used	 tech‐
niques,	 like	 response	 surface	 methodology,	 gradient‐based	 methods	 and	 evolutionary	 algo‐
rithms,	 as	 well	 as	 emerging	 ones,	 like	 stochastic	 approximation,	 particle	 swarm	 optimization	
and	ant	colony	optimization	were	encompassed.	Supsomboon	and	Vajasuvimon	proposed	simu‐
lation	model	using	Tecnomatix	Plant	Simulation	for	making	machine	parts	in	the	job	shop.	The	
simulation	 model	 shows	 that	 job	 expansion,	 plant	 allocation,	 group	 technology,	 and	 capacity	
expansion	ultimately	contribute	to	lower	operating	costs	and	increase	employee	utilization	[23].	

3. Materials and methods 

The	objectives	of	each	manufacturing	are	to	achieve	the	required	product	quality	with	the	least	
cost	 of	manufacturing,	 and	delivery	 on	 time	 [24].	Delivering	 on	 time	 is	 the	primary	 condition	
which	must	 be	 satisfied.	 This	 generally	means	 that	 the	 total	 required	 quantity	 of	 products	 qj	
must	 be	 produced	within	 the	 observed	 period,	 i.e.	 the	 completion	 time	 of	 the	 last	workpiece	
(makespan)	Cmax	must	be	less	than	the	maximum	available	time	of	the	manufacturing	equipment	
Cmax,goal	for	the	observed	period,	Eq.	1.	
	

௫ܥ ൏ ௫,ܥ (1)
	 	

	 Batch	size	of	 the	 j‐product	Lotj	 is	defined	as	a	natural	number	 in	a	given	 interval,	Eq.	2.	Dg	
represents	the	minimum	batch	size,	and	gg	the	maximum	batch	size	of	the	j‐product	that	cannot	
be	greater	than	the	total	quantity	of	product	qj.	
	

ݐܮ 	 ∈ ሾ݀݃, ݃݃ሿ, ∀ ݐܮ ∈ Գ 	 (2)
	 	

	 Taking	any	number	from	the	defined	range	as	the	batch	size	enables	a	lot	more	potential	op‐
timization	solutions	than	[25]	the	use	of	different	batch	size	with	the	assumption	that	the	total	
quantity	of	 the	product	must	be	multiplied	by	the	batch	size	(the	total	quantity	of	 the	product	
must	be	divided	by	the	batch	size).	This	means	that	each	batch	size	is	the	same,	which	greatly	
reduces	the	ability	to	find	a	better	solution.	
	 If	it	is	assumed	that	each	batch	size	of	the	same	product	is	equal	to	the	total	quantity	of	the	
product,	it	is	likely	that	more	products	will	be	produced	than	needed.	This	ultimately	does	not	
change	the	mean	flow	time,	but	it	extends	the	total	processing	duration.	Also,	this	creates	a	stock	
that	creates	additional	cost	that	is	undesirable	for	the	company.	
	 Simple	example:	It	is	necessary	to	produce	1,234	workpieces	in	2	weeks.	A	batch	size	is	400	
workpieces.	It	is	evident	that	if	three	batches	of	400	workpieces	are	produced,	there	are	still	34	
workpieces	left	to	produce.	If	four	batches	of	400	workpieces	are	produced,	the	stock	will	be	366	
workpieces,	which	will	increase	the	makespan,	and	therefore	the	possibility	of	not	delivering	on	
time.	For	this	reason,	it	is	ensured	that	the	last	batch	of	the	same	product	is	equal	to	the	Eq.	3.	
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,௦௧ݐܮ ൌ ݍ െ ݉ݑܰ_ݐܮ ∙ ݐܮ (3)
	
where		Lotj,last	 is	 the	size	of	 the	 last	batch	of	 the	same	product,	Lotj,last	∈	 [1,	Lotj];	qj	 is	 the	 total	
amount	of	the	same	product;	Lot_Numj	is	the	amount	of	produced	batches	of	the	same	product;	
Lotj	is	the	batch	size	of	the	same	product.	
	 In	 a	 flow	 shop	 production	 system	 the	 products	 travel	 in	 batches	 through	 the	 system.	 The	
batch	size	directly	affects	the	flow	time	in	a	way	that	increasing	the	batch	size	linearly	increases	
the	flow	time,	worth	and	vice	versa.	The	flow	time	Fj	 is	defined	as	the	time	the	j‐product	batch	
performs	 in	 the	 system,	 i.e.	 the	 difference	 between	 the	 j‐product's	 output	 time	 and	 the	 j‐
product's	input	time.	The	flow	time	of	each	j‐product	batch	is	different	because	of	uneven	wait‐
ing	times	on	the	processing.	For	simpler	further	optimization	their	mean	value	is	calculated	by	
Eq.	4.	Thus,	the	mean	flow	time	MFTj	is	actually	the	average	time	of	all	j‐product	flow	times.	By	
introducing	the	total	setup	time,	 the	mean	 flow	time	does	not	change,	but	the	makespan	does.	
The	bigger	the	total	setup	time,	the	bigger	the	makespan.	
	

ܨܯ ܶ ൌ
∑ ܨ
௧_ே௨ೕ
ଵ

݉ݑܰ_ݐܮ
	 (4)

	 	

	 In	order	to	determine	the	entry	sequence	of	product	batches,	a	second	variable	is	introduced	
‐the	 probability	 of	 entering	 the	 j‐product	 batches	 into	 the	 system	 Percj,	 defined	 as	 a	 natural	
number	at	a	given	interval,	Eq.	5.	
	

ݎ݁ܲ ܿ 	 ∈ ሾ݀݃, ݃݃ሿ, ∀ ݎ݁ܲ ܿ ∈ Գ 	 (5)
	 	

	 The	 real	 probability	 of	 entering	 the	 j‐product	 batches	 RealPercj	 is	 defined	 as	 ratio	 of	 the	
probability	 of	 entering	 the	 j‐product	 batches	 and	 sum	 of	 the	 probability	 of	 entering	 product	
batches,	according	to	Eq.	6.	
	

ݎ݈ܴ݁ܲܽ݁ ܿ ൌ 	
ݎ݁ܲ ܿ

ଵܿݎ݁ܲ  ଶܿݎ݁ܲ  ⋯ ݎ݁ܲ ܿ  ⋯ ܿݎ݁ܲ
	 (6)

	 	

	 The	entry	sequence	of	a	product	batches	has	no	effect	on	the	mean	flow	time,	but	when	enter‐
ing	 different	 product	 batch,	 the	 need	 for	 setup	 time	 appears.	When	 one	 batch	 of	 a	 particular	
product	is	completed	on	the	same	production	equipment,	then	a	new	batch	of	a	particular	prod‐
uct	comes	in.	If	the	new	product	batch	is	the	same	as	the	previous	product	batch,	then	setup	time	
is	not	required,	i.e.	the	setup	time	is	equal	to	zero.	If	the	new	product	batch	is	different	from	the	
previous	 product	 batch,	 then	 the	 setup	 of	 the	 workplace	 is	 required	 before	 the	 start	 of	 pro‐
cessing.	The	setup	time	is	randomly	selected	in	a	uniform	distribution,	according	to	[26].	At	the	
arrival	of	the	first	batch	of	any	product,	the	setup	of	the	workplace	is	also	carried	out.	 	
	 The	question	is	why	the	setup	time	cannot	be	clearly	displayed	(if	not	automated,	i.e.	if	it	per‐
forms	 at	 least	 partially	 by	 a	man)?	There	 are	many	 reasons,	 including	working	 staff	 that	per‐
forms	 the	 setup	 job	 is	 different	 (work	 in	 multiple	 shifts),	 fatigue	 and	 motivation	 of	 the	 staff	
members,	etc.	
	 It	is	not	possible	to	analytically	determine	how	much	is	the	total	setup	time	of	the	j‐product	
for	the	observed	period.	It	is	determined	by	simulation.	The	total	setup	time	of	the	j‐product	TSTj	
represents	the	sum	of	all	setup	times	of	the	j‐product	STj,	according	to	Eq.	7.	The	ST_Numj	repre‐
sents	the	number	of	impressions	of	setup	time	ST	during	the	production	of	the	j‐product.	

ܶܵ ܶ ൌ ∑ ܵ ܶ
ௌ்_ே௨ೕ
ଵ    (7)

	 It	is	concluded	that	the	minimum	total	setup	time	will	ideally	be	when	the	production	is	in	a	
unit	as	large	batches.	Also,	from	the	standpoint	of	the	minimum	mean	flow	time,	it	is	preferred	
that	the	production	takes	place	in	the	lowest	unit	of	product	batches,	which	leads	to	contradic‐
tions.	For	this	reason,	 in	order	to	simultaneously	minimize	both,	 the	mean	 flow	time	and	total	
setup	time,	it	is	necessary	to	conduct	optimization.	
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	 Optimization	will	be	performed	using	a	genetic	algorithm	that	is	embedded	in	the	used	soft‐
ware	package	Tecnomatix	Plant	Simulation.	The	structure	of	genetic	algorithm	is	shown	in	Fig.	1.	
Whereby	pop	means	population,	gen	means	generation	and	gen_num	means	maximum	number	
of	generations.	
	 Based	on	the	defined	input	variables	(batch	size	Lotj,	probability	of	entering	the	batch	Percj)	
and	the	simulation	model	of	the	production	system,	the	fitness	method	will	be	minimized.	The	
fitness	method	is	defined	as	the	sum	of	 individual	members	where	each	member	has	a	certain	
importance.	

	
Fig.	1	Structure	of	genetic	algorithm	

	 Thus,	each	individual	member	is	multiplied	by	the	weight	factor,	with	the	higher	weight	fac‐
tor	being	more	 important	 for	 the	overall	 result.	According	 to	 the	above,	 each	member	 for	 the	
mean	flow	time	of	j‐product	MFTj	would	be	multiplied	with	the	weight	factor	aj,	and	each	mem‐
ber	for	the	total	setup	time	of	the	j‐product	TSTj	would	be	multiplied	with	the	weight	factor	bj,	
shown	in	Eq.	8.	Considering	that	the	total	sum	of	all	weight	factors	must	be	equal	to	1,	Eq.	9.	
	

ݏݏ݁݊ݐ݂݅ ൌ ݉݅݊ ሺ ܽ ∙ ܨܯ ܶ  ܾ ∙ ܶܵ ܶሻ		 (8)
 

ܽଵ  ܽଶ ⋯ ܽ  ⋯ ܽ  ܾଵ  ܾଶ ⋯ ܾ  ⋯ ܾ ൌ 1	 (9)

4. Presentation of the problem 

4.1 General 

Studied	production	 system	 is	 designed	 according	 to	 the	production	plant	 companies	 from	 the	
real	 sector	 which	 are	 producing	 families	 of	 technologically	 similar	 products.	 Technologically	
similar	products	are	those	that	have	a	high	degree	of	similarity	to	the	order	of	processing	and	
duration	of	the	operations.	It	is	assumed	that	the	production	of	three	products	(D,	E,	F)	is	fore‐
seen	for	delivery	every	two	weeks,	or	more	precisely	every	second	Friday	after	the	second	shift	
at	10:00	p.m.	The	two‐week	quantity	determined	for	the	three	products	as	well	as	the	order	and	
duration	of	 the	operations	are	 assumed	and	shown	 in	Table	1.	The	operation	 times	are	 set	 in	
hours.	

Table	1	Example	data	

j	 D	 E	 F	
MiC	

qj	 4616	 3232	 2616	
i	 	 	 	 	
1		 10‐0.028	 10‐0.035	 10‐0.036	 3	
2		 20‐0.031	 20‐0.035	 20‐0.036	 3	
3		 30‐0.012	 30‐0.01	 30‐0.01	 1	
4		 40‐0.02	 40‐0.019	 40‐0.017	 2	
5		 50‐0.08	 50‐0.012	 50‐0.14	 1	

	
	 The	working	week	lasts	for	five	days	and	takes	place	in	two	shifts.	Operating	hours	per	shift	
are	eight.	From	this,	according	to	the	Eq.	6,	the	maximum	availability	of	production	equipment	
can	be	calculated	Cmax	 is	160	hours.	The	machines	cannot	operate	continuously,	without	 inter‐
ruption,	so	the	utilization	time	is	0.85,	according	to	[27].	The	required	number	of	i‐th	production	
equipment	MiC	has	been	obtained	by	[28],	assuming	that	the	reliability	of	production	equipment	
equals	1.	 Production	 takes	place	 at	 five	workstations,	where	 all	 three	products	pass	unidirec‐
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tional	through	the	system	and	are	processed	at	each	workstation.	Each	workstation	consists	of	
the	MiC	number	of	the	same	production	equipment.	All	of	the	above	defines	the	observed	produc‐
tion	system	as	a	flow	shop	with	multiple	processors	(FSMP).	Using	the	Tecnomatix	Plant	Simula‐
tion	software	package,	a	discrete	FSMP	model	was	developed.	
	 The	setup	time	is	defined	as	relatively	large	due	to	the	fact	that	in	a	serial	production,	except	
change	of	tools,	jig,	etc.,	it	is	extremely	important	to	check	the	first	workpiece	of	the	batch.	This	
is	sometimes	a	request	by	clients	in	some	industries	(e.g.,	automotive	industry).	Therefore,	the	
setup	time	STj	for	workstations	1	and	2	is	defined	by	a	uniform	distribution	between	10	and	18	
minutes,	while	for	workstations	3,	4	and	5	is	defined	by	a	uniform	distribution	between	12	and	
20	minutes.	Bearing	in	mind	that	these	are	technologically	similar	products,	the	setup	times	for	
any	combination	of	the	previous	and	next	batch	of	j‐products	are	approximately	equal	(D	→	E,	E	
→	F,	etc.).	
	 The	 boundary	 conditions	 for	 batch	 size	Lotj	 and	 probability	 of	 entering	 the	 j‐product	Percj	
were	given	by	Eq.	11	and	Eq.	12.	
	

ݐܮ ∈ ሾ10,1000ሿ ∀ ݐܮ ∈ Գ (11)

ݎ݁ܲ ܿ ∈ ሾ100,1000ሿ ∀ ݎ݁ܲ ܿ ∈ Գ (12)

4.2 Genetic algorithms parameters 

The	values	of	genetic	operators	used	were	as	follows:	probability	of	crossover	and	probability	of	
mutation	 were	 0.8	 and	 0.15,	 respectively.	When	 triggering	 optimization,	 the	 following	 limita‐
tions	for	the	genetic	algorithm	were	determined:	number	of	population	pop_num	=	50,	number	
of	generations	gen_num	=	250,	and	number	of	observation	obs_num	=	10.	

4.3 Coding of organisms 

The	genetic	algorithm	at	the	beginning	of	the	optimization	randomly	generates	an	initial	popula‐
tion	of	50	individuals.	Each	individual	(chromosome)	consists	of	six	genes	that	represent	a	spe‐
cific	property:	first	gene	is	batch	size	of	the	product	D,	second	gene		 is	 batch	 size	 of	 the	 product	
E,	 third	gene	 is	batch	 size	of	 the	product	F,	 fourth	gene	 is	 probability	 of	 entering	 into	 system	
batch	of	the	product	D,	 fifth	gene	is	probability	of	entering	into	system	batch	of	the	product	E,	
sixth	gene	is	probability	of	entering	into	system	batch	of	the	product	F.	

4.4 Definition of fitness function 

The	observed	optimization	task	is	the	assignment	task.	Therefore,	to	solve	this	problem,	a	given	
gene	assigns	a	random	value:	

 according	to	Eq.	11,	for	gene	of	batch	size,	
 according	to	Eq.	12,	for	the	probability	of	entering	a	certain	batch	of	the	product.	

	

	 When	 initial	 individuals	with	 corresponding	values	 (genes)	are	defined,	 the	 fitness	method	
for	all	individuals	within	the	population	is	calculated	using	Eq.	13:	
	

ݏݏ݁݊ݐ݂݅																								 ൌ ௫,௧ܥ  ܽ ∙ ܨܯ ܶ  ܽா ∙ ܨܯ ாܶ  ܽி ∙ ܨܯ ிܶ  ܾ ∙ ܶܵ ܶ	
																																											 ܾா ∙ ܶܵ ாܶ  ܾி ∙ ܶܵ ிܶ	

(13)
	 	

	 Earlier	defined	objectives	are	that	all	the	mean	flow	times	are	as	small	as	possible,	as	well	as	
all	total	setup	times.	Thus,	the	task	of	the	genetic	algorithm	is	to	find	the	least	value	(minimum)	
of	 the	 fitness	method.	Furthermore,	 as	 all	 the	optimization	parameters	 are	 equally	 important,	
the	assumption	is	that	all	weight	factors	are	equal,	i.e.:	

ܽ ൌ ܽா ൌ ܽி ൌ ܾ ൌ ܾா ൌ ܾி ൌ
1
6
	

	
	 Delivering	on	time	 is	 the	primary	condition	which	must	be	satisfied,	as	such,	 it	should	be	a	
part	of	 the	objective	 function.	However,	 it	 is	not	necessary	 for	 the	makespan	to	be	as	small	as	
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possible,	only	to	be	satisfied.	Therefore,	the	makespan	will	not	be	part	of	the	objective	function.	
In	order	for	the	genetic	algorithm	to	"move	away"	from	poor	(unsatisfactory)	solutions	and	"ap‐
proach"	better	solutions,	a	penalty	Cmax,penalty	 should	be	 introduced	according	to	Fig.	2.	Value	of	
Cmax,fit	 is	added	to	the	objective	function.	If	Cmax,fit	=	0,	the	delivery	condition	is	satisfied	and	will	
not	have	any	effect	on	the	objective	function,	but	if	Cmax,fit	>	0	then	this	means	that	the	condition	
is	not	satisfied	and	that	the	value	of	the	goal	function	will	increase,	which	will	ultimately	result	
in	moving	 genetic	 algorithm	 from	 bad	 solutions.	 In	 this	way,	 it	 is	 achieved	 that	 products	 are	
made	on	time	and	that	delivery	is	not	delayed.	
	

	
Fig.	2	Penalty	condition	

	 The	objective	function	was	calculated	in	the	example	of	two	selected	individuals.	
	

	 LotD	 LotE	 LotF	 PercD	 PercE	 PercF	
Individual	1	 255	 703	 444	 236	 199	 704	
Individual	2	 275	 325	 335	 770	 400	 350	
	

	 By	 simulation,	 the	mean	 flow	 time	 and	 the	 total	 setup	 time	 are	 obtained.	 The	 time	 format	
used	in	the	following	text	is	days:hours:minutes:seconds	(d:h:m:s).	
	

	 MFTD	 MFTE	 MFTF TSTD TSTE TSTF	 Cmax
Individual	1	 2:11:38:44 2:01:57:41	 1:15:18:29 2:04:22:00 1:19:08:15 3:23:06:42	 23:02:46:56

Individual	2	 0:23:49:18 1:00:46:18	 1:01:28:57 1:19:53:49 1:02:33:06 0:22:43:36	 5:22:33:50
	

	 Using	penalty	condition	(Fig.	2)	the	penalties	for	each	individual	are	obtained:	
	

Individual	1	 Cmax,penalty	=	[	(23:02:46:56	‐	6:16:00:00)	/	6:16:00:00	]	=	2.467	>	0	
	 Cmax,fit	=	(1	+	2.467	)	∙	(23:02:46:56	‐	6:16:00:00)	=	40:14:04:53	
Individual	2	 Cmax,penalty	=	[	(5:22:33:50	‐ 6:16:00:00)	/	6:16:00:00	]	=	‐0.122	 0
	 Cmax,fit	=	0	

	

	 Furthermore,	in	Eq.	13	the	objective	function	is	calculated	for	the	two	individuals	mentioned.	
	

Individual	1	

ݏݏ݁݊ݐ݂݅ ൌ 40: 14: 04: 53 
1
6
∙ 2: 11: 38: 44 

1
6
∙ 2: 01: 57: 41 

1
6
∙ 1: 15: 18: 29 

1
6
∙ 2: 04: 22: 00 

1
6
∙ 1: 19: 08: 15


1
6
∙ 3: 23: 06: 42 ൌ : : : 

Individual	2	

ݏݏ݁݊ݐ݂݅ ൌ 0	 
1
6
∙ 23: 49: 18 

1
6
∙ 1: 00: 46: 18 

1
6
∙ 1: 01: 28: 57 

1
6
∙ 1: 19: 53: 49 

1
6
∙ 1: 02: 33: 06 

1
6
∙ 22: 43: 36

ൌ : : : 	
	 	

	 The	mentioned	individuals	(parents)	can	be	selected	for	cloning	by	roulette	wheel	selection,	
whereby	Individual	2	being	much	more	likely	to	be	selected	than	Individual	1.	Every	individual	
can	be	selected	more	than	once,	but	it	is	also	possible	not	to	be	selected	even	once.	Genetic	oper‐
ators	(2‐point	crossover,	mutation)	are	applied	on	cloned	individuals	(offsprings)	[29].	Then	the	
probabilistic	method	selects	individuals	for	the	next	generation	between	parents	and	offsprings.	
The	process	 is	repeated	until	 it	reaches	the	250	generation.	The	genetic	algorithm	then	shows	
the	best	solutions.	
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5. Results and discussion 

The	previously	defined	optimization	by	genetic	algorithm	was	performed	on	an	8‐core	processor	
of	 2.66	 GHz,	with	 duration	 of	 2:04:40:50	 (d:h:m:s).	 The	 best	 generated	 solution	 for	 a	 defined	
optimization	task	is	1:00:55:36	(d:h:m:s),	which	is	the	minimum	value	of	the	objective	function.	
The	optimization	parameters	obtained	are	given	in	Table	2.	

From	an	evolutionary	diagram,	Figure	3,	are	visible	solutions	obtained	during	a	defined	num‐
ber	 of	 generations.	 Also,	 it	 can	 be	 observed	 that	 the	 genetic	 algorithm	 has	 relatively	 quickly	
found	a	fairly	good	solution,	but	an	increased	number	of	generations	were	given	an	even	better	
solution.	
	 Through	 optimization,	 the	 values	 for	 batch	 size	 of	 j‐product	 are	 obtained.	By	 initiating	 the	
simulation	 of	 the	 production	 system	 model	 for	 previously	 obtained	 optimization	 results,	 the	
sequence	 of	 entering	 of	 the	 j‐products	 is	 determined.	 Fig.	 4,	 besides	 the	 sequence	 of	 the	 j‐
product	entries,	also	presents	other	values	such	as:	batch	size	of	j‐product,	finished	quantity	of	j‐
product,	completion	time	(makespan),	mean	flow	time	of	j‐product	batch,	total	number	of	setup	
times,	total	setup	time	of	j‐product	and	others.	

Since	 the	 resulting	makespan	 is	 smaller	 than	 the	delivery	deadline,	 the	 start	 of	 production	
can	 be	 shifted	 from	Monday	 6:00	 a.m.	 to	 Tuesday	 10:49:30	 a.m.	 Also,	 by	means	 of	 the	 Gantt	
chart,	the	correct	timing	of	the	j‐product	batch	is	visible.	Due	to	a	large	number	of	batches	and	
workdays,	the	Gantt	chart	is	large	and	unobtrusive	on	a	small	display.	For	this	reason,	the	Gantt	
chart	for	one	working	day	is	shown	in	Fig.	5.	In	addition	to	the	start	date	of	the	product	batches	
on	particular	production	equipment,	the	end	date	of	the	processing	of	the	last	workpiece	from	
the	batch	is	shown,	as	well	as	the	total	processing	time	(the	time	the	product	batch	spent	on	par‐
ticular	production	equipment). 
	

Table	2	Batch	size	of	products	D,	E,	F	for	the	observed	case	

LotD	 LotE	 LotF	 PercD	 PercE	 PercF	
274	 324	 330	 776	 425	 351	

	
	

	
Fig.	3	Evolution	diagram	shows	a	quick	finding	of	a	enough	good	solution	
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Fig.	4	FSMP	model	with	displayed	results	

 
Fig.	5	The	Gantt	chart	of	products	D,	E,	F	for	one	working	day	

6. Conclusion 

This	paper	deals	with	the	problem	of	determining	the	batch	size	and	the	sequence	of	entering	
the	product	batches	into	the	system,	focusing	on	sequence‐dependent	setup	times.	A	GA	simula‐
tion	approach	was	presented	as	a	combination	of	stochastic	modelling	of	discrete	event	simula‐
tion	capabilities	and	intelligent	GA	search	algorithm.	A	discrete	model	for	flow	shop	with	multi‐
ple	processors	(FSMP)	was	developed	using	the	Tecnomatix	Plant	Simulation	software	package,	
specialized	 in	manufacturing	 engineering	 as	 a	 tool	 to	 support	 the	manufacturing	 planning	 of	
technologically	similar	products.	
	 Based	on	the	developed	model and developed procedures	within	the	genetic	algorithm,	op‐
timal	values	 for	the	mean	flow	time	and	total	setup	time	are	obtained,	along	with	the	primary	
condition	of	delivering	the	product	on	time.	The	GA	simulation	approach	has	shown	that	for	the	
defined	performance	measures,	the	mean	flowtime	and	the	total	setup	time,	the	discrete	model	
provides	good	solutions.	The	solution	is	applicable	and	shows	the	exact	batch	entering	into	the	
process	 and	 gives	 a	 detailed	 order	 and	 timing	 of	 entering	 a	 particular	 product	 batch	 into	 the	
default	system.	The	main	contribution	of	this	paper	is	the	simplicity	and	concision	of	the	display	
solution	that	serves	as	a	tool	for	manufacturing	operations	planning.	
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