An improved flower pollination algorithm for optimization of intelligent logistics distribution center

Hu, W. a, *a

aSchool of Economics and Management, Shanghai University of Electric Power, Shanghai, P.R. China

ABSTRACT
It is easy to fall into local optimal solution in solving the optimal location of intelligent logistics distribution center by traditional method and the result of optimization is not ideal. For this, the study puts forward an optimization method of intelligent logistics distribution center based on improved flower pollination algorithm. This method uses the logic self-mapping function to carry out chaotic disturbance to the pollen grains, so that the pollen grain set lacking the mutation mechanism has strong self-adaptability, and the convergence of the optimal solution in the later stage of the algorithm is effectively prevented. The boundary buffer factor is used to buffer the cross-boundary pollen grains adaptively so as to prevent the algorithm from the local optimization, and the convergence speed and the optimization accuracy of the algorithm can be improved obviously in processing the optimal location of intelligent logistics distribution center. The convergence of the algorithm is analyzed theoretically by using the real number coding method, and the biological model and theoretical basis of the algorithm are given. The experimental results show that the proposed method has better performance than the traditional one, and the algorithm outperforms a genetic algorithm and particle swarm algorithm. It provides a feasible solution for the intelligent logistics distribution center location strategy. It affords a good reference for improving and optimizing the internal logistics of the manufacturing system and the operational efficiency of the entire intelligent logistics system.

Keywords: Intelligent logistics; Distribution center; Optimization; Intelligent optimization algorithm; Flower pollination algorithm; Intelligent location

*Corresponding author: hwshiep@shiep.edu.cn (Hu, W.)

Article history:
Received 19 October 2018
Revised 21 April 2019
Accepted 15 May 2019

References


