Femtosecond laser helical drilling of nickel-base single-crystal super-alloy: Effect of machining parameters on geometrical characteristics of micro-holes

Yin, C.P.\(^a\), Wu, Z.P.\(^a\), Dong, Y.W.\(^{ab,\ast}\), You, Y.C.\(^a\), Liao, T.\(^a\)

\(^a\)School of Aerospace Engineering, Xiamen University, Xiamen, P.R. China
\(^b\)Shenzhen Research Institute, Xiamen University, Shenzhen, P.R. China

ABSTRACT

Laser micro-hole processing has been widely used in industry. Many laser processing parameters can affect the processing results. The relationship between the geometrical shapes of micro-holes and the laser processing parameters has not been determined accurately. In this paper, experiments on the femtosecond laser drilling of the nickel-base single-crystal super-alloy (DD6) materials were conducted to determine the relationship between the parameters, such as the laser single-pulse energy, rotation rate, and downward focus rate, and the geometrical characteristics of the micro-holes, such as the diameter, and roundness. A group of orthogonal experiments were conducted to determine the effects of the comprehensive influencing factors on the geometrical characteristics of the micro-holes. After the experiments were conducted and analysed, the experimental results were modelled by a backpropagation neural network, and the mapping relationship between the laser parameters and the geometrical morphologies of the micro-holes was constructed. The model established by the backpropagation neural network could obtain accurate prediction results, and the predictions of the diameters of the micro-holes were better than those of the roundness.

© 2019 CPE, University of Maribor. All rights reserved.

References

