High-speed machining parametric optimization of 15CDV6 HSLA steel under minimum quantity and flood lubrication

Khawaja, A.H.\(^a\), Jahanzaib, M.\(^b\), Cheema, T.A.\(^c\)

\(^a\)Department of Mechanical Engineering, University of Engineering and Technology, Taxila, Pakistan
\(^b\)Department of Industrial Engineering, University of Engineering and Technology, Taxila, Pakistan
\(^c\)Department of Mechanical Engineering, GIK Institute of Engineering Sciences, Topi, Pakistan

**ABSTRACT**

High-speed machining (HSM) maintains a high interest in the preparation of metal parts for optimum results, but with the application of HSM, the sustainability issue becomes important. To overcome the problem, minimum quantity lubrication (MQL) during HSM is one of the innovative and challenging tasks during conventional cutting (milling) to improve quality, productivity, and strength under the umbrella of sustainability. The objective of this research is to achieve sustainable machining by simultaneously optimizing sustainable machining drivers during the HSM of 15CDV6 HSLA steel under MQL and flood lubrication. The response surface methodology has been applied for the development of mathematical models and selecting the best combination of process parameters to optimized responses, i.e. surface roughness, material removal rate, and strength. Optimization associated with sustainability produced compromising optimal results (Min. Ra 0.131 µm, Max. MRR 0.64 cm³/min, and Max. ST 1132 MPa) at the highest cutting speed 270 m/min and the lowest feed rate 0.09 mm/rev and depth of cut 0.15 mm under MQL. The comparative investigation exposed that significant improvement in Ra (1.1-16.6 %) and ST (1.3-2.3 %) of the material using MQL has been witnessed and gives a strong indication that MQL is the best substitute than the flood lubrication. The scientific contribution of the approach is to develop mathematical models under MQL and flood lubrication that will aid practitioners to choose input parameters for desired responses without experimentations. The work would be beneficial in the field of aviation, defense, and aeronautical applications due to the excellent mechanical properties of 15CDV6 HSLA steel.

© 2020 CPE, University of Maribor. All rights reserved.

**Keywords:** High-speed machining; Milling; HSLA steel; Chromium-molybdenum-vanadium steel (15CDV6); Minimum quantity lubrication; Optimization; Sustainability

*Corresponding author: amar.khawaja@students.uettaxila.edu.pk (Khawaja, A.H.)*

**Article history:**
Received 3 August 2020
Revised 28 November 2020
Accepted 3 December 2020

**References**


