

240

	

Advances	in	Production	Engineering	&	Management	 ISSN	1854‐6250	

Volume	16	|	Number	2	|	June	2021	|	pp	240–252	 Journal	home:	apem‐journal.org	

https://doi.org/10.14743/apem2021.2.397 Original	scientific	paper	

Optimization of disassembly line balancing using an
improved multi‐objective Genetic Algorithm

Wang, Y.J.a,*, Wang, N.D.a, Cheng, S.M.a, Zhang, X.C.a, Liu, H.Y.a, Shi, J.L.a, Ma, Q.Y.a, Zhou, M.J.a
aSchool of Mechanical Engineering and Automation, Dalian Polytechnic University, P.R. China

A B S T R A C T	 A R T I C L E I N F O	

Disassembly	 activities	 take	 place	 in	 various	 recovery	 operations	 including	
remanufacturing,	recycling,	and	disposal.	Product	disassembly	is	an	effective	
way	 to	 recycle	 waste	 products,	 and	 it	 is	 a	 necessary	 condition	 to	 make	 the	
product	 life	 cycle	 complete.	 According	 to	 the	 characteristics	 of	 the	 product	
disassembly	 line,	based	on	minimizing	 the	number	of	workstations	and	bal‐
ancing	the	idle	time	in	the	station,	the	harmful	index,	the	demand	index,	and	
the	number	of	direction	changes	are	proposed	as	new	optimization	objectives.	
So	based	on	 the	analysis	of	 the	 traditional	genetic	algorithm	 into	 the	preco‐
cious	phenomenon,	this	paper	constructed	the	multi‐objective	relationship	of	
the	disassembly	line	balance	problem.	The	disassembly	line	balance	problem	
belongs	 to	 the	 NP‐hard	 problem,	 and	 the	 intelligent	 optimization	 algorithm	
shows	excellent	performance	in	solving	this	problem.	Considering	the	charac‐
teristics	of	the	traditional	method	solving	the	multi‐objective	disassembly	line	
balance	problem	that	the	solution	result	was	single	and	could	not	meet	many	
objectives	of	balance,	a	multi‐objective	improved	genetic	algorithm	was	pro‐
posed	to	solve	the	model.	The	algorithm	speeds	up	the	convergence	speed	of	
the	algorithm.	Based	on	 the	example	of	 the	basic	disassembly	 task,	by	 com‐
paring	 with	 the	 existing	 single	 objective	 heuristic	 algorithm,	 the	 multi‐
objective	improved	genetic	algorithm	was	verified	to	be	effective	and	feasible,	
and	 it	was	 applied	 to	 the	 actual	 disassembly	 example	 to	 obtain	 the	balance	
optimization	 scheme.	 Two	 case	 studies	 are	 given:	 a	 disassembly	 process	 of	
the	automobile	engine	and	a	disassembly	of	the	computer	components.	

 Keywords:	
Assembly;		
Disassembly;		
Line	balancing;		
Multi‐objective	optimization;		
Remanufacturing;		
Product	recovery;		
Product	life	cycle;	
NP‐hard	problem;	
Improved	genetic	algorithm	

*Corresponding	author:		
wangyj@dlpu.edu.cn	
(Wang,	Y.J.)	

Article	history:		
Received	13	May	2021	
Revised	23	May	2021	
Accepted	4	June	2021	

	
Content	from	this	work	may	be	used	under	the	terms	of	
the	Creative	Commons	Attribution	4.0	International	
Licence	(CC	BY	4.0).	Any	further	distribution	of	this	work	
must	maintain	attribution	to	the	author(s)	and	the	title	of	
the	work,	journal	citation	and	DOI.

1. Introduction

With	 the	 continuous	development	of	 science	 and	 technology,	 the	demand	 for	new	products	 is	
increasing,	and	the	number	of	waste	products	and	components	is	increasing,	which	will	inevita‐
bly	cause	pollution	to	the	environment.	In	order	to	solve	the	shortage	of	resources	and	realize	
sustainable	development,	the	enterprise	must	pay	attention	to	the	recycling	and	reuse	of	waste	
products.	Disassembly	is	the	basic	action	of	product	recycling,	extracting	useful	parts	and	recy‐
cling	harmful	parts	to	achieve	a	circular	economy	and	green	manufacturing.	

In	recent	years,	more	and	more	researchers	have	devoted	themselves	to	the	disassembly	line	
balancing	problem	(DLBP).	Gungor	and	Gupta	[1]	analyzed	and	described	the	DLBP	problem	and	
put	forward	the	influencing	factors.	Avikal	et	al.	[2]	used	heuristic	algorithm	to	solve	DLBP	prob‐
lem,	but	there	are	some	limitations.	Altekin	and	Akkan	[3]	used	a	linear	programming	method	to	
optimize	 DLBP	 to	 achieve	 the	 purpose	 of	 a	 balanced	 disassembly	 line.	 The	 Genetic	 Algorithm	
was	used	to	solve	the	disassembly	line	balancing	problem	and	the	optimal	solution	was	obtained	

Optimization of disassembly line balancing using an improved multi‐objective Genetic Algorithm

Advances in Production Engineering & Management 16(2) 2021 241

in	an	effective	 time.	Kailayci	et	al.	 adopted	a	 simulated	annealing	algorithm,	which	had	strong	
processing	capacity	and	better	local	search	capability	than	other	algorithms.	However,	it	took	a	
long	time	and	had	a	weak	ability	to	obtain	a	globally	optimal	solution	[4,	5].	Nikola	et	al.	solved	
the	DLBP	problem	under	multi‐objective	conditions	in	actual	production	[6‐10].	Ding	et	al.	[11]	
proposed	 an	 ant	 colony	 algorithm	 based	 on	 Pareto	 to	 optimize	 the	 four	 objectives.	 Cao	 et	al.	
solved	disassembly	line	balancing	problems	with	different	algorithms	[12‐22].	

By	analyzing	the	above	works	of	literature	and	methods,	it	is	easy	to	see	intelligent	optimiza‐
tion	algorithms	such	as	Genetic	Algorithm,	which	have	excellent	performance	 in	solving	multi‐
objective	optimization	problems.	

Given	the	shortcomings	of	 the	above	researches,	an	 improved	genetic	algorithm	for	solving	
the	disassembly	line	balancing	problem	was	proposed,	and	its	advantages	for	solving	this	kind	of	
problem	were	analyzed	and	verified	through	specific	problems	and	examples.	

The	paper	is	organized	as	follows.	The	mathematical	model	is	summarized	in	Section	2.	Op‐
timization	and	analysis	with	multiple	objectives	are	also	described	 in	 this	section.	Section	3	 is	
the	presentation	of	the	solution.	The	case	analysis	and	discussion	are	reported	in	Section	4.	Fi‐
nally,	the	conclusions	are	reported	in	Section	5.	

2. Mathematical models

2.1 Basic assumptions

There	 are	 many	 uncertainties	 in	 the	 actual	 disassembly	 process,	 and	 these	 uncertainties	 are	
bound	to	affect	the	production	beat	of	the	disassembly	online	operation.	Considering	the	appli‐
cation	scope	of	the	model	in	practice,	this	paper	ignores	extreme	phenomena	in	the	process	of	
building	the	U‐shaped	DLBP	model,	so	the	following	assumptions	are	made.	

1) The	production	beat	is	unchanged.	
2) The	disassembly	resources	are	the	same	or	similar	in	structure.	
3) The	resource	is	completely	disassembled,	and	the	operation	stops	after	the	disassembly	

to	the	last	part.	
4) All	disassembly	tasks	are	performed	on	the	disassembly	line	with	no	missing	parts	dur‐

ing	the	operation.
5) Operator	proficiency	and	experience	are	the	same,	that	is,	the	disassembly	time	of	each	

part	does	not	vary	from	operator	to	operator		
6) During	the	disassembly,	the	required	parts	are	guaranteed	to	be	intact,	that	is,	the	disas‐

sembly	process	can	bring	economic	benefits.
7) The	 disassembly	 time	 of	 the	 parts	 is	 not	 affected	 by	 external	 factors	 such	 as	 product	

quality,	and	there	is	no	dependence	between	the	parts.
8) The	disassembly	process	is	carried	out	according	to	the	disassembly	task	and	cannot	be	

disassembled.
9) Operating	time	is	normally	distributed	 ௜ܶ௝~ܰሺߤ, 	.ଶሻߪ
10) The	constraints	are	as	follows.	

a) The	total	operation	time	of	each	workstation	shall	not	exceed	the	production	beat.	
b) The	same	disassembly	operation	shall	not	be	carried	out	in	two	or	more	workstations.	

2.2 Basic parameters

Assuming	 that	 each	 unassembled	 part	 is	 a	 disassembly	 task,	 the	 number	 of	 parts	 is	݊	(also	
known	as	the	number	of	disassembly	tasks).	ܶ	is	the	set	of	all	the	tasks,	ܶ	=	ሼ1,2,3, … , ݊ሽ.	ܰ	is	the	
number	 of	 workstations.	ܶܥ	is	 the	 production	 beat.	 The	 parameter	ݐ௞	represents	 the	 sum	 of	
activity	time	of	all	disassembly	tasks	allocated	on	the	workstation	݇.	

2.3 Decision variables

The	 variable	 x௜௞ 	represents	 the	 relationship	 between	 task	 ݅ 	and	 workstation	 ݇ ,	 ௜௞ݔ ൌ 1 ,	
otherwise	ݔ௜௞ ൌ 0.	

Wang, Wang, Cheng, Zhang, Liu, Shi, Ma, Zhou

242 Advances in Production Engineering & Management 16(2) 2021

௜௞ݔ ൌ ቄ1，task	݅	is	assigned	to	workstation	݇
0，																																																										else

	

	
The	balanced	optimization	of	the	disassembly	line	should	not	only	consider	the	balanced	distri‐
bution	of	work	 tasks	but	also	 include	 the	environment	and	resources.	The	products	 to	be	dis‐
mantled	 may	 contain	 harmful	 substances,	 such	 as	 heavy	 metals	 and	 chemical	 poisons,	 which	
should	be	 given	priority	 in	 the	disassembly	operation.	The	main	purpose	of	disassembly	 is	 to	
recycle	and	use	the	spare	parts	with	surplus	value,	and	the	valuable	parts	should	be	dismantled	
as	 soon	as	possible.	To	minimize	 the	disassembly	 time	of	 the	product	 to	be	disassembled,	 the	
number	 of	 changes	 of	 disassembly	 orientation	 is	 also	 included	 in	 the	 optimization	 space	 to	
shorten	the	disassembly	time.	

In	this	paper,	five	objectives	of	disassembly	line	balancing	are	considered	and	optimized.	

1) Minimum	number	of	workstations.	
2) Balance	the	free	time	of	each	workstation.	
3) Disassemble	high‐demand	components	as	soon	as	possible.	
4) Disassemble	hazardous	parts	as	soon	as	possible.	
5) The	least	change	of	direction	for	disassembling.	

	

ଵܨ݊݅݉ ൌ ݇	 (1)
	

∑=ଶܨ݊݅݉ ሺܶܥ െ ௞ሻேݐ
௞ୀଵ 	 (2)

	

ܨ ൌ ෍ሺܶܥ െ ௞ሻଶݐ

ே

௜ୀଵ

	 (3)

	

ଷܨ݊݅݉ ൌ ෍ሺܶܥ െ ௞ሻଶݐ

ே

௞ୀଵ

	 (4)

	

ହܨ݊݅݉ ൌ ෍ ݅݊௉ௌ೔

ே

௜ୀଵ

	 (5)

	

ସܨ݊݅݉ ൌ ෍ ݅݀௉ௌ೔

ே

௜ୀଵ

	 (6)

	

where	݊௉ௌ೔
ൌ ቄ1	needed

0						else
,	݀௉ௌ೔

ൌ ቄ1	harmful
0							else

.

The	direction	 indicators	 are	 introduced	 to	 evaluate	 the	 solution	 sequence.	 The	 smaller	 the	
value,	the	less	the	change	of	direction	in	the	disassembly	process,	the	better	the	solution	will	be.	
The	following	relation	is	used	to	represent	each	direction	of	the	disassembly	process	relative	to	
the	parts	and	workstations.	
	

௉݂ௌ೔
ൌ

ە
ۖ
۔

ۖ
ۓ

െ3 െ Z direction
െ2 െ Y direction
െ1											 െ X	direction
1 ൅ X direction
2 ൅ Y direction
3 ൅ Z direction

	 (7)

	

The	direction	indicators	are	expressed	in	the	form	of	decision	variables.	
	

ହܨ݊݅݉ ൌ ∑ ௜ܨ
ேିଵ
௜ୀଵ ௜ܨ, ൌ ቊ

1, ௉݂ௌ೔
 ௉݂ௌ೔శభ

0, ௉݂ௌ೔
ൌ ௉݂ௌ೔శభ

	 (8)

The	multi‐objective	disassembly	line	balance	is	represented	as	the	following	model	by	the	above	
balance	objectives.	
	

Optimization of disassembly line balancing using an improved multi‐objective Genetic Algorithm

Advances in Production Engineering & Management 16(2) 2021 243

ܨ݊݅݉ ൌ ሺܨଷ, ,ସܨ ,ହܨ 	଺ሻܨ (9)
s.t.	

෍ ௝ݐ

௡

௝ୀଵ

ܶܥ/ ൑ ܰ ൑ ݊	 (10)

	

෍ሺݔ௝௞ ⋅ ௝ݐ

௡

௝ୀଵ

ሻ ൑ ,ܶܥ ∀݆ ∈ ሺ1,2, . . . , ܰሻ	 (11)

	

෍ሺ݆ ⋅ ௝௔ݔ

௡

௝ୀଵ

ሻ ൑ ෍ሺ݆ ⋅ ௝௞ೕݔ

௡

௝ୀଵ

ሻ, ∀ሺܽ, ௝݇ሻ ൌ 1	 (12)

The	objective	 function	(Eq.	1)	represents	the	minimum	number	of	workstations.	The	objec‐
tive	function	(Eq.	2)	means	to	balance	the	free	time	of	each	workstation.	The	objective	function	
(Eq.	5)	represents	the	index	value	of	disassembling	parts	with	high	demand	first.	The	objective	
function	(Eq.	6)	represents	the	index	value	of	priority	disassembly	of	hazardous	parts.	The	ob‐
jective	function	(Eq.	8)	represents	the	least	change	of	direction	for	disassembling.	

The	constraint	 function	 (Eq.	10)	means	 that	 the	number	of	workstations	 should	be	no	 less	
than	the	number	of	theoretical	workstations	and	no	more	than	the	number	of	disassembly	tasks.	
The	constraint	function	(Eq.	11)	represents	that	the	disassembly	time	in	each	workstation	shall	
not	 exceed	 the	 production	 beat.	 The	 constraint	 function	 (Eq.	 12)	 means	 the	 disassembly	 se‐
quence	must	meet	the	disassembly	priority	relationship.	

3. Presentation of solution and used genetic operations
Genetic	Algorithm	(GA)	was	proposed	in	1967	by	a	scientific	research	team	led	by	John	Holland	
of	the	University	of	Michigan	[23].	It	is	a	natural	evolution‐based	algorithm	for	intelligent	opti‐
mization	 search	 based	 on	 the	 concept	 of	 biological	 evolution	 and	 the	 laws	 of	 biogenetics	 and	
natural	selection.	GA	relies	on	the	information	exchange	of	the	individuals	in	the	community	and	
population	search,	to	encode	the	parameters	of	the	solution	as	genes,	and	several	genes	consti‐
tute	 a	 chromosome,	 as	 an	 individual,	 many	 chromosomes	 experience	 generation	 genetic	 by	
crossover,	selection	and	mutation	operation,	the	search	results	gradually	converge	to	the	region	
where	the	optimal	solution	is	located	until	the	optimal	solution	is	found.	The	advantage	of	GA	in	
solving	 the	 problem	 of	 activity	 order	 optimization	 is	 that	 the	 optimal	 solution	 can	 be	 found	
without	going	through	the	space	of	all	solutions,	and	the	solution	effect	 for	the	multi‐objective	
optimization	problem	is	significant.	

3.1 Coding

Encoding	methods	include	binary	encoding,	float‐point	encoding,	real	number	encoding,	and	so	
on.	Given	 the	disassembly	 line	activity	 tasks,	by	using	a	chromosome	encoding	rules	based	on	
activity	order	successively,	n	disassembly	elements	are	arranged	 in	a	 row,	corresponding	 to	a	
gene	site,	and	according	to	the	priority	diagram	of	activity	order,	these	disassembly	elements	are	
assigned	to	each	workstation	and	are	coded	according	to	the	sequence	of	processes	in	the	work‐
station.	The	weighted	time	value	of	the	process	shall	not	be	higher	than	the	scheduled	produc‐
tion	rhythm	in	the	workstation.	Zero	insertion	[24]	is	used	to	represent	the	start	(or	end)	posi‐
tion	 of	 the	 activity	 element	 of	 the	 current	 workstation.	 There	 are	݊	activities	 and	݇ ൅ 1	zeros.	
The	activity	element	between	two	adjacent	zeros	is	the	same	workstation.	

3.2 Initial population generation

The	quality	of	the	initial	population	has	an	obvious	impact	on	the	evolution	process	and	the	effi‐
ciency	of	the	algorithm.	In	order	to	ensure	the	diversity	of	individuals	and	solutions	in	the	initial	
population,	the	topological	sorting	random	search	is	used	to	generate	the	initial	population.	The	
process	is	as	follows.	

Wang, Wang, Cheng, Zhang, Liu, Shi, Ma, Zhou

244 Advances in Production Engineering & Management 16(2) 2021

 According	to	the	diagram	of	activity	priority	order,	the	task	݅	without	pre‐task	is	found	in	
the	complete	set	of	tasks	(population)	and	put	into	the	new	set	 ଵܶ,	and	the	task	݅	and	its	re‐
lated	sequences	are	deleted	in	the	operation	sequence	diagram.	

 Repeat	 the	above	operations	until	 the	 task	set	 the	empty	set,	 and	 finish	 the	 task	assign‐
ment.	The	selected	task	is	put	into	the	corresponding	gene	position	in	each	step,	and	the	
obtained	sequence	is	the	initial	feasible	disassembly	sequence.	

3.3 Decoding

The	coding	adopts	a	one‐dimension	group	solution	 sequence	based	on	 the	 task,	which	cannot	
determine	the	individual's	merits	and	demerits.	The	solution	sequence	needs	to	be	allocated	to	
each	workstation	[25,	26].	The	operation	is	as	follows.	

 Start	the	first	workstation	j	=	1.	
 Initialize	the	current	workstation	time	and	remaining	time.	
 Find	task	i	in	the	solution	sequence.	When	the	task	time	allocated	exceeds	the	current	re‐

maining	 time,	 the	assignment	 fails.	Open	 a	new	workstation	 randomly	and	 initialize	 the	
current	 workstation	 time	 and	 remaining	 time.	 Else	 assign	 task	 i	 to	 the	 current	 work‐
station,	update	the	workstation	time	and	remaining	time,	and	cycle	until	permutation	se‐
quence.	

By	decoding	each	individual	and	inserting	zeros	between	workstations,	each	workstation	and	
task	assignment	in	the	population	can	be	determined,	and	the	visualization	of	the	algorithm	can	
be	improved.	
3.4 Fitness

Fitness	function	plays	an	important	role	in	the	evaluation	of	individuals	in	GA	search	evolution.	
Only	 the	 objective	 function	 can	 be	 used	 to	 optimize	 the	 system	 in	 the	 solution	 space.	 In	 the	
Genetic	Algorithm	space,	the	objective	function	is	transformed	into	individual	fitness	according	
to	certain	rules,	and	the	fitness	value	is	evaluated	to	realize	the	judgment	of	the	feasible	solution	
in	the	solution	space.	

3.5 Genetic operators

Selection	
Roulette	is	the	most	commonly	used	selection	method.	The	sampling	idea	is	that	the	probability	
of	 the	 selected	 individual	 inheriting	 the	next	 generation	 is	 directly	proportional	 to	 the	 fitness	
value.	The	higher	the	evaluation	of	the	fitness	function	of	the	individual,	the	greater	the	proba‐
bility	of	inheriting	to	the	next	generation.	This	is	the	probability	݌௜௦	of	an	individual	selected	in	
function	(13).	

௜௦݌ ൌ /௜ܨ ෍ ௜ܨ

ெ

௝ୀଵ

, ݅ ൌ 	ܯ~1 (13)

Crossover	
Crossover	is	an	important	way	to	form	new	individuals.	Two	chromosomes	are	selected	from	the	
selected	population,	and	some	genes	are	exchanged	with	specific	rules	to	form	new	individuals	
after	recombination	[27].	

Because	the	random	crossover	method	in	traditional	methods	often	leads	to	a	large	number	
of	repetitions	and	conflicts,	results	in	infeasible	solutions	and	affects	the	operational	efficiency	of	
the	 algorithm,	 this	 process	 uses	 two‐point	 mapping	 crossover	 method,	 randomly	 determines	
two	crossover	points	on	the	parent	chromosome,	sorts	some	genes	between	the	two	chromatids	
of	the	father	generation	and	adopts	partial	mapping	to	save	the	genes	on	both	sides	of	the	cross‐
over	point	and	put	 them	 into	a	new	 individual,	 thus	producing	 two	new	offspring	 individuals.	
Assuming	that	the	third	and	fifth	gene	locus	are	randomly	selected	as	the	crossover	points,	the	
sequence	{6,	3,	7},	{2,	4,	9}	before	the	two	crossover	points	in	the	parent	generation	can	be	pre‐
served,	and	the	sequence	{8,	5,	1}	between	the	two	crossover	points	in	the	parent	2	is	{1,	5,	8}.	
The	specific	process	is	shown	in	Fig.	1.	

Optimization of disassembly line balancing using an improved multi‐objective Genetic Algorithm

Advances in Production Engineering & Management 16(2) 2021 245

Fig.	1	The	diagram	of	crossover	

Mutation	

Similar	 to	 the	 crossover	 operation,	 the	 mutation	 will	 produce	 infeasible	 solutions	 due	 to	 the	
constraints	of	the	activity	priority	relationship.	In	this	process,	single‐point	variation	is	used.	A	
mutation	point	 (position	4	 in	Fig.	2)	 is	 randomly	generated	on	 the	chromosome	of	 the	parent	
generation.	According	to	the	activity	priority	diagram,	the	pre‐process	and	post‐process	of	 the	
mutation	 point	 are	 found	 out,	 so	 that	 the	 pre‐process	 and	 its	 previous	 gene	 position,	 post‐
process	and	its	subsequent	gene	position	can	be	retained.	Position	4	is	randomly	inserted	into	
the	nearest	gene	position	between	the	pre‐process	and	the	post‐process	in	the	chromosome,	and	
then	the	above	genes	are	integrated	to	generate	new	progeny	chromosomes.	If	the	selected	mu‐
tation	 position	 does	 not	 have	 an	 optional	 insertion	 position,	 the	 mutation	 point	 can	 be	 re‐
selected.	

Fig.	2	The	diagram	of	mutation	

3.6 Termination conditions

As	 a	 search	 tool	 of	 repeated	 iterations,	 GA	 approximates	 the	 optimal	 value	 infinitely	 through	
multiple	evolutionary	cycles,	instead	of	just	calculating	the	optimal	solution.	Therefore,	it	is	nec‐
essary	 to	determine	 the	 termination	 condition	and	 the	generations	of	 genetic	 iteration.	At	 the	
beginning	of	the	algorithm,	the	number	of	iterations	should	be	set	as	small	as	possible,	and	then	
increases	iterations	as	appropriate.	When	the	number	of	iterations	exceeds	the	required	maxi‐
mum	number	of	generations	the	algorithm	stops.	

Wang, Wang, Cheng, Zhang, Liu, Shi, Ma, Zhou

246 Advances in Production Engineering & Management 16(2) 2021

3.7 Implementation process

Although	 the	 individuals	 of	 the	 initial	 population	 are	 feasible,	 it	 is	 impossible	 to	 determine	
whether	the	optimal	individuals	appear	in	the	early	stage	of	the	algorithm.	Therefore,	the	prob‐
ability	 of	 crossover	 and	 mutation	 can	 be	 increased	 to	 enhance	 the	 optimization	 ability	 of	 the	
algorithm.	In	the	later	stage	of	iteration,	when	the	algorithm	converges	gradually,	the	individual	
fitness	value	becomes	higher.	In	order	not	to	destroy	the	excellence	of	genes	in	individuals,	the	
probability	of	crossover	and	mutation	is	often	reduced	to	improve	the	operation	efficiency	of	the	
algorithm.	In	this	paper,	the	adaptive	crossover	and	mutation	probability	are	used.	The	symbols	
used	to	run	the	algorithm	are	as	follows:	ܯ	is	the	maximum	number	of	iterations,	݉	is	the	num‐
ber	of	iterations,	 ௖ܲ 	is	the	crossover	probability.	 ௠ܲ	is	the	mutation	probability.	 ௖ܲ௠௜௡	is	the	min‐
imum	crossover	probability,	 ௖ܲ௠௔௫	is	the	maximum	probability.	 ௠ܲ௠௜௡	is	the	minimum	mutation	
probability.	 ௠ܲ௠௔௫	is	the	maximum	mutation	probability.	
	

௖ܲ ൌ ௖ܲ௠௔௫ ൅ ௖ܲ௠௜௡ െ ௖ܲ௠௔௫

ܯ
݉	 (14)

	

௠ܲ ൌ ௠ܲ௠௔௫ ൅ ௠ܲ௠௜௡ െ ௠ܲ௠௔௫

ܯ
݉	 (15)

	

Step1:	Determination	of	parameters.	Select	the	value	of	ܰܲ,	 ௖ܲ ,	 ௠ܲ.	
Step2:	Initialization	population.	Order	ݐ ൌ 0,	the	initial	population	Pሺ0ሻ	with	ܰܲ	individuals	are	

generated	under	the	condition	of	the	beat	constraint	and	the	priority	of	tasks.	
Step3:	Fitness	assessment.	The	fitness	value	of	each	individual	in	the	ܶ	generation	population	is	

calculated.	
Step4:	Selection.	ܰሺܲሻ	individuals	are	selected	from	the	ܶ	generation	population	and	cloned	into	

the	ܶ ൅ 1	generation.	
Step5:	Crossover.	
Step6:	Mutation.	
Step7:	Optimal	preservation	strategy.	
Step8:	Repeat.	Order	t← ݐ ൅ 1,	when	the	termination	condition	is	met,	it	ends.	Else,	turn	to	Step3.	

4. Case studies: The practical application and analysis

4.1 Disassembly of the computer components

The	disassembly	 information	of	 a	 computer	component	with	8	parts	 is	 shown	 in	Table	1.	The	
disassembly	of	the	parts	is	shown	in	Fig.	3.	The	improved	Genetic	Algorithm	is	used	to	solve	the	
problem.	

Matlab	R2012b	software	is	used	to	realize	the	algorithm	program	on	the	windows10	system	
platform,	and	the	above	examples	are	solved	[28].	The	minimum	number	of	workstations	is	4,	
the	hazard	index	ܪ	is	7,	the	demand	is	ܦ ൌ 211,	the	direction	index	is	ܴ ൌ 7.	The	optimal	solu‐
tion	 is	given	 in	Table	2.	Table	3	shows	 the	optimal	disassembly	series	 solution	and	 the	work‐
station	after	balancing.	Among	them,	disassembly	tasks	1	and	5	are	assigned	to	workstation	1,	
and	workstation	2	is	mainly	responsible	for	disassembly	tasks	3,	6,	2,	and	so	on.	In	addition,	the	
optimal	solution	removes	high	demand	parts	3,	6,	2,	and	hazardous	parts	7	earlier,	allowing	sev‐
en	directions	to	change,	and	the	calculation	time	of	the	algorithm	is	less	than	1s.	The	equilibrium	
and	hazard	objectives	of	the	solution	obtained	are	the	same	as	those	in	reference	[29],	while	the	
demand	index	is	better	than	that	in	reference	[29],	and	there	is	one	more	direction	index	than	
reference	[29].	Therefore,	the	overall	performance	of	the	solution	obtained	is	better	than	that	in	
reference	[29].	

The	optimal	solutions	obtained	by	these	two	single	objective	algorithms	are	shown	in	Table	
2,	and	the	parameter	design	in	reference	[29]	is	combined	with	the	DLBP	problem.	After	repeat‐
ed	tests	on	the	quality	of	the	solution	and	the	efficiency	of	the	algorithm,	the	parameters	in	this	
paper	 are	 set	 as	 follows: ܰܲ ൌ 1, 	 ܯ ൌ 100, 	 ௖ܲ௠௜௡ ൌ 0.5, 	 ௖ܲ௠௔௫ ൌ 0.95, 	 ௠ܲ௠௜௡ ൌ 0.005,	

௖ܲ௠௔௫ ൌ 0.01.	After	calculation,	the	optimal	value	is	obtained	and	the	operation	time	is	analyzed.	

Optimization of disassembly line balancing using an improved multi‐objective Genetic Algorithm

Advances in Production Engineering & Management 16(2) 2021 247

The	optimal	disassembly	series	solutions	are	shown	in	Table	3.	Comparing	the	improved	Genetic	
Algorithm	with	 the	 traditional	Genetic	Algorithm,	 it	 can	be	seen	 that	 the	 test	 results	are	more	
prominent	than	the	traditional	algorithm	in	dealing	with	this	problem,	and	the	running	time	is	
shorter.	

Table	1	The	disassembly	information	for	eight	components	

Disassembly	tasks	 Disassembly	operation	 Time	 Demands	 Harmful	 Direction	
1	 Disassembly	PC	top	cover	(TC) 14 360 N	 ‐x	
2	 Disassembly	floppy	disk	driver	(FD) 10 500 N	 +x	
3	 Disassembly	hard	disk	driver	(HD) 12 620 N	 ‐x	
4	 Disassembly	bottom	plate	(BP) 18 480 N	 ‐x	
5	 Disassembly	PCI	card	 23 540 N	 +y
6	 Disassembly	RAM	modular	 16 750 N	 +z	
7	 Disassembly	power	supply	(PU) 20 295 Y	 ‐x	
8	 Disassembly	mother	board	(MB) 14 360 N	 ‐x	

	

Fig.	3	The	activity	priority	relationship	of	components	

	
Table	2	The	comparison	of	optimization	results	

Algorithm	 Number	of	
workstations	S	

Balance	index	
F	

Demand quantity	
D	

Harmful	index	
H	

Direction index	
R	

Reference	[29]	GA	 4	 211	 19275	 7	 ‐	
Improved	GA	 4	 211	 19025	 7	 7	
	
	 	

Wang, Wang, Cheng, Zhang, Liu, Shi, Ma, Zhou

248 Advances in Production Engineering & Management 16(2) 2021

Table	3	The	optimal	disassembly	series	solution	of	DLBP	

	
Workstation	i

S1	 S2	 S3	 S4	

Disassembly	series	

1 14
	

	
	

Free	time	0	s	

5 23
3

	

12
6 16
2 10
8

	
36

7
	

20
4 18

Total	time	 37 38 36 38
Idle	time	 3	 2	 4	 2	

	

4.2 Disassembly of the automobile engine

Taking	the	automobile	engine	disassembly	example	in	reference	[30]	as	the	research	object,	the	
engine	is	completely	disassembled,	and	Fig.	4	shows	the	engine	disassembly	diagram.	The	origi‐
nal	 enterprise	did	not	 consider	 the	damage	and	demand	of	disassembly,	 and	 the	variability	 is	
poor,	 so	 it	 cannot	adapt	 to	 the	change	of	disassembly	 task	 in	 time.	Now	the	 improved	Genetic	
Algorithm	is	used	to	improve	the	engine	cylinder	block	disassembly	line.	The	relevant	data	are	
shown	in	Table	4.		

The	bearing,	toothed	belt,	belt,	connection	key,	connection	pin,	and	other	parts	in	the	assem‐
bly	 are	 simply	 removed	 and	 replaced	 with	 a	 group	 of	 assembly	 and	 fasteners	 to	 reduce	 the	
number	of	disassembly	parts.	In	addition,	the	disassembly	operation	was	investigated	to	obtain	
detailed	disassembly	data	such	as	operation	time,	disassembly	priority	relationship,	constraints,	
disassembly	 demands,	 hazards,	 and	 direction	 changes	 of	 each	 part.	 Standard	 operating	 time	
(SST)	on	line	disassembly	was	measured.	Standard	operating	time	is	the	time	taken	by	a	skilled	
worker	to	complete	a	process	at	a	normal	speed	under	normal	operation.	The	disassembly	oper‐
ation	time	is	measured	by	the	stopwatch	method	in	industrial	engineering,	and	the	optimization	
goal	is	taken	into	account	the	damage	of	parts,	demand,	and	the	change	of	operation	direction.	

Fig.	4	The	engine	disassembly	diagram	

	 	

Optimization of disassembly line balancing using an improved multi‐objective Genetic Algorithm

Advances in Production Engineering & Management 16(2) 2021 249

Table	4	The	engine	part	elements	
No.	 Name	 Time Demand Harmful	 Direction
1	 Camshaft	coverscrew	 5×12 5 N	 +z
2	 Camshaft	cover	 3 65 N	 +z
3	 Camshaft	cover	plate	screw	 4×20 15 N	 +z
4	 Camshaft	cover	plate	 2×8 15 N	 +z
5	 Starting	claw 6.5 35 N	 +x
6	 Pulley	 20 40 N	 +x
7	 Side	cylinder	head	screw	 6.5 45 N	 +x
8	 Side	cylinder	head	 5.5 65 N	 +x
9	 Chain	restraint	screw	 4.5×4 8 N	 +x

10	 Chain	restraint	mechanism	 3 8 N	 +x
11	 Chain		 10 15 N	 +z
12	 Camshaft	 3.2 60 N	 +z
13	 Cylinder	head	cover	screw	 4×8 70 N	 +z
14	 Top	cylinder	head	cover	 21 30 N	 +z
15	 Rocker	fastening	screw	 8×16 45 N	 +z
16	 Rocker	 3×16 95 N	 +z
17	 Valve	 4×16 50 N	 +z
18	 spark	plug	 28×4 40 Y	 +z
19	 Cylinder	block	screw	 5.5 40 N	 +z
20	 Cylinder	Block 20 95 N	 +z
21	 Connecting	rod	cover	 10×4 65 N	 +z
22	 Connecting	rod	 5×4 40 N	 +z
23	 Connecting	rod	screw	 7×4 40 N	 +z
24	 Crankshaft	bearing	cover	screw 5×10 25 N	 +z
25	 Crankshaft	bearing	cover	 3×5 15 N	 +z
26	 Crankshaft	 20 95 N	 +z
27	 Cylinder	Black 23 30 N	 +z
28	 Flywheel	nut 15 30 N	 ‐x
29	 Flywheel	screw	 5.5×6 45 N	 ‐x
30	 Flywheel	 30 50 N	 ‐x
31	 Seat	screw	 5×12 65 N	 +z
32	 Seat	 6 30 N	 +z

	

Input	 the	 operation	 sequence	 matrix	 of	 the	 automobile	 engine	 of	 the	 disassembly	 line	 and	
program	it	on	Matlab2012b.	The	given	beat	ܶܥ	is	120s.	The	parameters	of	the	algorithm	are	as	
follows:	ܰܲ	=	50,	MaxGen	=	150,	ܲܣܩ	=	0.9.	By	optimizing	multiple	objective	functions,	the	algo‐
rithm	 in	 this	 paper	 achieves	 the	 prediction	 results,	 jumps	 out	 of	 the	 local	 optimal	 solution	 to	
obtain	a	better	solution,	and	the	searchability	is	significantly	improved.	The	optimization	results	
are	shown	in	Fig.		5.		

The	zeroing	operation	in	encoding	and	decoding	can	isolate	each	workstation.	After	the	oper‐
ation,	the	balancing	result	of	linear	layout	and	U‐shaped	layout	is	shown	in	Fig.	6.	The	number	of	
workstations	 in	 linear	 layout	 optimization	 is	 15,	 while	 the	 number	 of	 U‐shaped	 layouts	 is	 9.	
Therefore,	 the	 U‐shaped	 layout	 can	 minimize	 the	 number	 of	 workstations	 and	 has	 a	 certain	
economy.	

The	station	allocation	and	operating	time	range	volatility	are	shown	in	Table	5	and	Table	6.	
The	range	volatility	is	the	ratio	of	idle	time	to	total	operating	time.	All	the	data	fluctuate	within	
the	10	%	range.	It	can	be	concluded	that	the	assignment	and	optimization	of	work	elements	of	
both	linear	and	U‐shaped	workstations	in	DLBP	problem	are	reasonable,	which	proves	the	scien‐
tific	and	effectiveness	of	the	model.	The	utilization	rate	of	each	workstation	in	the	disassembly	
line	under	 the	U‐shaped	 layout	 is	higher	 than	 that	of	 the	 traditional	 straight	 line,	and	 the	 idle	
waiting	time	in	the	workstation	is	smaller,	which	shows	a	significant	difference	between	the	two	
types	of	disassembly	 lines.	 It	 is	proved	 that	 the	U‐shaped	 layout	 is	better	and	can	achieve	 the	
balance	effect.	

The	algorithms	can	find	out	a	better	solution,	the	number	of	workstations,	balance	index,	re‐
source	 index	 got	 better	 optimization,	 such	 as	 the	 direction	 indicators	 have	 improved,	 can	
achieve	better	solving	the	performance.	The	feasibility	of	the	proposed	improved	genetic	algo‐
rithm	in	solving	the	balance	problem	of	a	multi‐objective	U‐shaped	disassembly	line	is	verified.	
The	optimization	results	of	straight	layout	and	U‐shaped	layout	are	compared,	and	it	is	proved	
that	U‐shaped	layout	is	more	suitable	for	disassembly	line	layout.	

Wang, Wang, Cheng, Zhang, Liu, Shi, Ma, Zhou

250 Advances in Production Engineering & Management 16(2) 2021

Fig.	5	The	optimal	results	

	

(a)	The	balancing	result	of	linear disassembly line	layout	

(b)	The	balancing	result	of	U‐shped	disassembly line	layout	

Fig.	6	The	balancing	results	

	

Table	5	The	workstation	allocation	of	liner	disassembly line	layout	

Workstation	number	 Station	time	(s) Idle	time	(s) Range	fluctuation	Range	
volatility	(%)	

1	 114.5 5.5 0.56	
2	 59.5 60.5 6.13	
3	 117.5 2.5 0.25	
4	 72.5 47.5 4.85	
5	 109 11 1.11	
6	 114 6 0.61	
7	 119 1 0.10	
8	 110 10 1.01	
9	 55 65 6.58	
10	 117 3 0.3	

	
	 	

 5 291 28 30 6 2 7 18 8

15913310114121614

17 19 20 24 21 25 22 26 27 23

3132

1 295

32

28 30 2

31

3

23

 18
13 15

27

16 4

7 6

21 24 26 25 22

10 9 8

27 20

 19 14 12 11

