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A B S T R A C T A R T I C L E   I N F O 
With the gradual normalization of the COVID-19, unmanned delivery has grad-
ually become an important contactless distribution method around China. In 
this paper, we study the routing problem of unmanned vehicles considering 
path flexibility and the number of traffic lights in the road network to reduce 
the complexity of road conditions faced by unmanned vehicles as much as pos-
sible. We use Monte Carlo Tree Search algorithm to improve the Genetic Algo-
rithm to solve this problem, first use Monte Carlo Tree Search Algorithm to 
compute the time-saving path between two nodes among multiple feasible 
paths and then transfer the paths results to Genetic Algorithm to obtain the 
final sequence of the unmanned vehicles fleet. And the hybrid algorithm was 
tested on the actual road network data around four hospitals in Beijing. The 
results showed that compared with normal vehicle routing problem, consider-
ing path flexibility can save the delivery time, the more complex the road net-
work composition, the better results could be obtained by the algorithm. 
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1. Introduction
The Novel Coronavirus Disease (COVID-19) broke out globally in 2020, and in November 2021, 
the mutant virus Omicron was discovered and spread rapidly around the world. According to 
WHO, the strain spreads faster and is more transmissible. By February 2022, the Omicron strain 
has become a major epidemic strain worldwide. Due to the wide range and high contagiousness 
of the epidemic, especially the significant characteristics of human-to-human transmission, the 
Chinese government has always taken strict precautions and implemented closed-off manage-
ment in high-risk areas to minimize the spread of the epidemic. Thus, unmanned and contactless 
techniques have become important force in the fight against the epidemic. With the spread of the 
epidemic, more and more cities, such as Changsha and Shanghai have begun to use unmanned 
vehicles to distribute medical suppliers to the epidemic areas. 
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Compared to conventional manned vehicles, unmanned delivery vehicles are far more reliant 
on road conditions. For technical reasons, unmanned vehicles are less able to adapt to complex 
road conditions than normal vehicles. Hence the major research on unmanned vehicles usually 
focus on the design of algorithms based on uncertain traffic situations or obstacle avoidance for 
unmanned vehicles. However, under circumstance of the epidemic, considering of all technologi-
cal aspects to plan thorough routes for unmanned vehicles can better meet the requirements of 
contactless delivery. The traditional vehicle routing problems consider the distribution sequences 
between demand points solely and ignore the fact that there are frequently multiple alternate 
paths between demand points in the actual distribution processes. The traffic situations and jour-
ney times of various routes are different and have substantial impact on the safety and efficiency 
of unmanned vehicles. 

In reality, usually the more traffic lights need to go through, the more complex information 
needs to be processed, so this paper incorporates the number of traffic lights in the road network 
into the vehicle routing problem, considers to select a safer and faster path for unmanned vehicles. 
Establishing a vehicle routing problem model with paths flexibility (VRP-PF) with the goal of min-
imizing distribution time for unmanned vehicles.  

2. Literature review 
Since the unmanned vehicles relies heavily on road conditions and traffic situations, for un-
manned delivery vehicles, most researchers take into account the unmanned vehicles’ ability of 
avoiding obstacles and adapting to the traffic conditions.  

Hu [1] et al. designed a genetic simulated annealing algorithm to solve the unmanned vehicles 
routing problem with road conditions updates, and adjusted the delivery plan in real time based 
on the local update strategy for the pre-optimize paths based on the road condition information, 
and the results showed that the algorithm has more advantages than traditional genetic algo-
rithms under complex road conditions. Guan [2] proposed an unmanned vehicles routing problem 
model based on traffic situations. To improve the adaptability of unmanned vehicles to road con-
ditions, a DQN local optimization model with heuristic reward and adaptive exploration strategy 
was proposed. This model could reduce delivery time and increase delivery efficiency, but it did 
not involve the obstacle avoidance problem of unmanned vehicles and was not tested on real traf-
fic data. Zhu [3] and Han [4] both studied the unmanned vehicle routing problem using deep re-
inforcement learning, with the difference that Zhu’s research targeted the obstacle avoidance 
problem of unmanned vehicles in dynamic environments, while Han's research considered the 
objective of minimizing distance and the number of vehicles from the perspective of unmanned 
fleets. Tavoosi [5] et al. designed an improved particle swarm algorithm to process certain and 
uncertain obstacles to obtain the optimal paths. Based on total driving distance and waiting time, 
Shi W. et al. proposed a multi‐objective scheduling model to solve the path conflict problem of 
automated guided vehicles (AGVs) and used the A* path planning algorithm to search the shortest 
path of AGV [6]. Erenoglu used the Unmanned Aerial Vehicles (UAV) based 3D city modelling ap-
proach to be manage and plan urban areas [7]. In view of many scholars consider the real-time 
traffic conditions in unmanned vehicles routing problem, Wang [8] et al. proposed a routing model 
for unmanned vehicles in the case of GPS system failure. Additionally, Levy [9] et al. considered 
the unmanned vehicles routing problem under fuel-limited conditions and designed multiple 
neighbourhood shakes to improve the variable neighbourhood search algorithm, which was able 
to obtain better results compared with the traditional variable neighbourhood search algorithm 
but the result was not an optimal solution. Zhao [10] designed a genetic algorithm to solve the 
unmanned vehicles routing problem considering the charging and switching requirements of un-
manned vehicles. It can be seen that the research on unmanned vehicles routing problem mainly 
focus on obstacle avoidance considering traffic conditions and energy supply of unmanned vehi-
cles. Besides, heuristic algorithms are the main solution approaches used. 

There are many different variants of the VRP, like Split-Delivery VRP [11], Heterogeneous VRP 
with Time Windows [12], stochastic VRP [13], VRP with Pickup and Delivery [14], ConVRP (Con-
sistent Vehicle Routing Problem) [15] and EVRP (electric vehicle routing problem) [16] etc. But 
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few research focus on the vehicle routing problem with path flexibility (VRP-PF). This problem 
was first defined by Huang [17] et al. in 2017, and they developed model considering time win-
dows under deterministic and uncertain traffic conditions. The model was solved by CPLEX and 
obtained the approximate optimal solutions. Liu [18] et al. proposed a green vehicles routing 
model considering the fuel consumption of vehicle acceleration and waiting at traffic lights and 
established the model with path flexibility to minimizing fuel and other costs. Due to the high 
complexity of the model, it could only solve instances with 10 demand points. But their research 
proves that routes planning considering path flexibility can save costs. Wang [19] et al. proposed 
a vehicle routing problem model with path flexibility for electric vehicles, considering the selec-
tion of charging stations. Then they designed a variable neighbourhood search algorithm to solve 
this problem, but they only considered multiple choices of charging stations, multiple paths be-
tween the stations are not involved. Guo [20] et al. developed a time-dependent bus routing prob-
lem model considering traffic congestions with path flexibility, and designed a tabu search algo-
rithm to solve it. Given that the safety of unmanned vehicles is highly dependent on road condi-
tions and the distribution of epidemic supplies are time-efficient, we incorporate the waiting time 
during traffic lights to measure road conditions and establish a vehicle routing problem model 
with path flexibility. Then we design a hybrid heuristic algorithm, using Monte Carlo tree search 
algorithm to improve the Genetic Algorithm to solve the routing problem with path flexibility. 

3. Model and algorithm of vehicle routing problem with path flexibility 
3.1 Problem description and mathematic model 

The vehicle routing problem with path flexibility is defined on a directed graph 𝐺𝐺 = (𝑉𝑉,𝑃𝑃), where 
𝑉𝑉 = {0,1,2, . . . ,𝑛𝑛} is the set of vertices, 𝑃𝑃 = {(𝑖𝑖, 𝑗𝑗,𝑝𝑝): 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗,𝑝𝑝 ∈  𝑃𝑃𝑖𝑖𝑖𝑖} is the set of paths, and 
𝑃𝑃𝑖𝑖𝑖𝑖  is the optional path from vertex 𝑖𝑖 to vertex 𝑗𝑗. In the set 𝑉𝑉, vertex 0 denotes the starting point 
and the rest vertices denote the demand points. In the set 𝑃𝑃, the length of the path 𝑝𝑝𝑖𝑖𝑖𝑖  is 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖, the 
number of traffic lights is 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖. N denotes the set of unmanned vehicles, where all vehicles are ho-
mogeneous, and the capacity of the vehicle is 𝐶𝐶. The vehicle meets a red light with a certain prob-
ability 𝑆𝑆 and the waiting time is w. The speed of unmanned vehicle is 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖, which is related to time 
and the road area where the unmanned vehicle is located. The objective is to minimise the time 
cost and find a solution that satisfies the following constraints: (1) the demand at each demand 
point is satisfied and the demand cannot be split; (2) all vehicles depart from and return to the 
starting point; (3) minimise the number of traffic lights in the optimal paths. An example diagram 
of this problem is shown in Fig. 1. 

 
Fig. 1 Schematic diagram of VRP-PF 

Assuming the fleet of unmanned vehicles are homogeneous, the yellow dot 0 in Fig. 1 indicates 
the departure point of all vehicles in the fleet, the green square dots 1,2,3,4 are demand points, 
the traffic light marker indicates that there is a traffic light at this junction and vehicles may need 
to wait for a while when the light is red. The blue triangular dots are non-demand nodes in the 
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road network. Suppose that all nodes in the diagram are disconnected, and the unmanned vehicle 
needs to travel from point 0 to demand point 1, there are multiple paths to choose, such as 0-5-6-
7-1, 0-19-7-1 or 0-19-20-1. For the road network with only 22 nodes shown in Fig. 1, there are 
more than dozens of feasible paths between each two demand points, which greatly increases the 
complexity of the problem than traditional routing problem. 

Unmanned delivery vehicles are low-speed vehicles, and the Implementation Rules for the 
Management of Unmanned Delivery Vehicles promulgated by the Beijing Economic and Techno-
logical Development Area in May 2021 requires that the speed of unmanned delivery vehicles 
should not exceed 15 km/h. Besides, the speed of unmanned vehicles varies with the traffic con-
ditions in real life. Therefore, we map the traffic indexes crawled from Baidu map to the speeds of 
unmanned vehicles, and the corresponding table of traffic indexes and speeds is shown in Table 1. 

The expression of speed is a piecewise function which is shown in Fig. 2. 
Table 1 Correspondence between traffic index and travel speed 

Real-time vehicle speed Traffic index Unmanned vehicle's speed 
>30 1 15 

10-30 2 10 
<10 3 5 

 
Fig. 2 Speeds of unmanned vehicles on different roads 

 
The optimization objective in this paper is delivery time of unmanned vehicles, as shown in Eq. 

1. 
min𝑇𝑇 = ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖

𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝∈𝑃𝑃(𝑖𝑖,𝑗𝑗)∈𝑉𝑉 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑆𝑆𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 ,∀𝑘𝑘 ∈ 𝑁𝑁     (1) 

Define the decision variables and associated parameters as follows. 

𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 = �1,   if arc (𝑖𝑖, 𝑗𝑗) 𝑖𝑖s on the optimal route 
0, otherwise  

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 = �
1, if the vehicle travels path 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 on the arc (𝑖𝑖, 𝑗𝑗)

0, otherwise
 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘  is actual capacity when vehicle 𝑘𝑘 is on arc (𝑖𝑖, 𝑗𝑗,𝑝𝑝), and 𝑞𝑞𝑖𝑖 is demand of customer 𝑖𝑖. There-
fore, the question can be formulated as follows. 

s.t. 
� 𝑥𝑥𝑖𝑖𝑖𝑖 − � 𝑥𝑥𝑗𝑗𝑗𝑗

𝑖𝑖∈𝑉𝑉,𝑖𝑖≠𝑗𝑗𝑖𝑖∈𝑉𝑉,𝑖𝑖≠𝑗𝑗

= 0, ∀𝑗𝑗 ∈ 𝑉𝑉 (2) 

𝑞𝑞𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘 ≤ (𝐶𝐶 − 𝑞𝑞𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉 (3) 

�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 =  𝑥𝑥𝑖𝑖𝑖𝑖 , ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉
𝑝𝑝∈𝑃𝑃

 (4) 
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�𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 =  𝐶𝐶𝑖𝑖𝑖𝑖, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉
𝑝𝑝∈𝑃𝑃

 (5) 

𝑞𝑞𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 ≤ (𝐶𝐶 − 𝑞𝑞𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉,𝑝𝑝 ∈ 𝑃𝑃 (6) 
𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1},∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉 (7) 
𝐶𝐶𝑖𝑖𝑖𝑖 ≥ 0,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉 (8) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1},∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉,𝑝𝑝 ∈ 𝑃𝑃 (9) 
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉, 𝑝𝑝 ∈ 𝑃𝑃 (10) 

𝑞𝑞𝑖𝑖 > 0,∀𝑖𝑖 ∈ 𝑉𝑉\{0} (11) 
𝑞𝑞0 = 0 (12) 

Eq. 2 is the vehicle flow conservation constraint. Constraint Eq. 3 ensures that the volume of 
unmanned vehicles at each node does not exceed the maximum vehicle capacity. Eq. 4 ensures 
that each unmanned vehicle selects only one feasible path from node 𝑖𝑖 to node 𝑗𝑗. Constraints Eqs. 
5-6 ensure that supplies are transported on only one feasible path and do not exceed the maxi-
mum vehicle capacity. The rest are specific constraints of the variables. 

3.2 Monte Carlo Tree Search algorithm (MCTS) 

The vehicle routing problem belongs to NP-hard problem, and the vehicle routing problem with 
path flexibility is more difficult because the decisions to make are not only the routing decision 
but also the path selection decision depending on the departure time and the congestions in the 
relevant road network. The problem can be regarded as a two-stage problem with finding the 
optimal sequence of demand points and the optimal path selection between demand points. More-
over, the sequence of demand points affects path selection between points, and different paths 
affect the sequence of demand points in reverse. Since in the real road network, roads are criss-
crossed and there are often numerous feasible paths between two points, Huang [17] et al. used 
Dijkstra's algorithm to find the shortest path between two points when considering path flexibil-
ity. However, the contrasting traffic conditions of different roads and the variational speed on dif-
ferent roads increase the difficulties of using exact algorithms. Hence, we apply the Monte Carlo 
tree search algorithm (MCTS) to solve the path flexibility of the problem and adopt MCTS to im-
prove the genetic algorithm to solve the whole problem. 

MCTS is a method for determining the optimal policy in a given domain. It is a simulation-based 
search algorithm with a tree structure that combines depth-first search and breadth-first search. 
Furthermore, it maintains superior results when the search space is huge and is widely used in 
fields such as games [21-24]. Therefore, MCTS is able to find the acceptable path rapidly for the 
large datasets. The process of MCTS can be divided into four steps: selection, expansion, simula-
tion, and backpropagation, repeated these four steps until convergence [25]. 

The selection process is commonly implemented using the Upper Confidence Bound for Tree 
(UCT) algorithm, which searches and selects the next node to be visited among all the nodes, the 
formula of UCT is shown as Eq. 13. 

𝑈𝑈𝑈𝑈𝑈𝑈 =  𝑋𝑋𝚥𝚥� + 2𝐶𝐶𝑝𝑝�
2ln𝑛𝑛
𝑛𝑛𝑗𝑗

       (13) 

where 𝑛𝑛 is the number of times the current parent node has been visited, 𝑛𝑛𝑗𝑗 is the number of times 
the child node has been visited, 𝐶𝐶𝑝𝑝 is a constant greater than zero, and the value of 𝑋𝑋𝚥𝚥�  usually be-
tween [0,1], [24]. 

Even though the UCT strategy can provide acceptable outcomes, the rate of convergence is 
modest. To improve the efficiency, the weight of the node depends on the travel time, and the 
shorter the travel time is, the higher the weight is and the node is more likely to be selected. There-
fore, the pseudo for the algorithm can be written as Algorithm1. 
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Algorithm1：path search for MCTS 

Input：origin node no, destination node nd 
Output: optimal path p between no and nd  

1: function PathSearch(Array, no, nd) 
2: Disconnect no from other nodes and initialize trial nodes list L 
3: if Array[doj] != 0 then 
4:  L ← add nj to L 
5: end if 
6: while ni != nd do 
7:   ni ← Select a node ni from L according to the weight  
8:   p ← add ni to p 
9: end while  

10: return p 
11: end function 

Unlike complex games such as Go (Weiqi), game theory is not involved during the routing 
search process and therefore there is no need to switch decisions, so we omit the backpropagation 
process. The routing search is able to find a solution inevitably (if the path is not feasible can be 
named as a non-feasible solution), so by setting a certain number of iterations we can implement 
the simulation process in MCTS. By simulating kmax times, the final output of the path with the 
highest weight can be fed back to the genetic algorithm, the flow chart of MCTS algorithm is shown 
in Fig. 3. 

 
Fig. 3 Flow Chart of MCTS Algorithm 

3.3 Monte Carlo Tree Search Improved Genetic Algorithm (MCTS-GA) 

The Monte Carlo tree search algorithm can find the optimal path between two nodes effectively, 
but it cannot solve the vehicle routing problem. In contrast, the genetic algorithm has better 
search capability and scalability, so we use the framework of the genetic algorithm and combined 
with the Monte Carlo tree search algorithm to solve the entire problem. 

Coding design 

Chromosomes are encoded using decimal coding that is frequently used in genetic algorithms in 
this paper, but each node includes an attribute label. The nodes in the road network are divided 
into four categories, starting nodes (point 0 in Fig. 1), customer demand nodes (green square 
nodes in Fig. 1), road nodes without demand (blue triangular nodes in Fig. 1) and traffic lights 
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nodes (nodes with traffic light signs in Fig. 1), which together form a complete road network. In 
the actual distribution work, the customer demand nodes are the nodes that required to make 
decisions about the order of distribution for the vehicle routing problem, while the road nodes 
and traffic lights nodes are the nodes that required to make decisions about whether or not to 
pass for path flexibility. 

Therefore, the attribute labels of the different nodes need to be assigned to the nodes in order 
for the algorithm to identify the nodes to be processed at different stages when coding. A sche-
matic of the coding scheme is shown in Fig. 4 (using a feasible path in the road network of Fig. 1 
as an example). 

Fig. 4 shows a complete feasible route for an unmanned vehicle, which includes both the de-
mand nodes to be delivered and all road nodes in the road network to be passed through during 
delivery. But when computing the vehicle routing problem with genetic algorithm, the code of 
chromosome can be streamlined to retain only the starting nodes and customer demand nodes, 
which means the code shown in Fig. 4 only needs to be processed as (0,2,1,0). This route is the 
delivery route for an unmanned vehicle without path flexibility (assuming that the sum of the de-
mand does not exceed the vehicle capacity). In contrast, in the process of MCTS, the entire road 
network needs to be processed, that means the path with minimized travel time and traffic lights 
between each two nodes in the route needs to be found in turn. For example, a feasible path from 
the starting point to customer demand node 2 can be expressed as (0,19,20,2). 

 
Fig. 4 Schematic of complete route coding scheme 

Crossover, mutation and heredity   

Both the crossover and mutation operations are directed at the vehicle routing problem, without 
considering path flexibility. The crossover process uses a two-opt crossover. To avoid duplicate 
fragments or missing fragments in the offspring generated after the crossover, we first randomly 
select sample fragments from parent 2 and inserts them into the corresponding positions of the 
offspring, and then traverses parent 1 and inserts the genes that are not duplicated with the sam-
ple fragments therein in turn to form new offspring. The crossover process is shown in Fig. 5 (the 
crossover process does not consider road nodes and traffic lights nodes, assuming that all nodes 
except node 0 in Fig. 5 are customer demand nodes). 

The mutation process is a two-point mutation, which means that two genes on a chromosome 
that do not contain the first and last gene are randomly selected to swap positions. To improve 
the efficiency of the search, an elitist selection strategy is used, whereby the top 2 % of the off-
spring in each generation are retained and placed directly into the next generation. Besides, the 
idea of an invasive weed algorithm is involved so that the more adapted individuals produce rel-
atively more offspring. 

 
Fig. 5 Schematic diagram of the crossover process 

Adaptability function 

After the allocation sequence of customer demand nodes has been generated by the genetic algo-
rithm, the MCTS can be used to obtain the optimal path between the customer demand nodes then 
the travel time and total length of the path as well as the times of traffic lights passed can be 
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calculated. The individual with the greater the fitness is more retainable, so according to Eq. 1 the 
fitness function can be expressed as Eq. 14. 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  1
𝑇𝑇�     (14) 

MCTS-GA algorithm flow 

The above describes the process of selecting feasible paths between nodes using the MCTS algo-
rithm and the solution of the vehicle routing problem using genetic algorithm respectively, but 
the two processes need to be carried out in unison to obtain a complete solution for the problem. 
The flowchart of the Monte Carlo Tree Search Improved Genetic Algorithm (MCTS-GA) is shown 
in Fig. 6. 

After generating the sequence of customer demand nodes by the genetic algorithm, we use the 
MCTS to find the optimal path between each two nodes and the search result is transferred to the 
genetic algorithm for population fitness calculation. Then cross and mutation operations are car-
ried out to generate the new population, and the complete path is finally output after repeated 
iterations until reach the maximum number of iterations. 
 

 
Fig. 6 Flow chart of MCTS-GA algorithm 

4. Numerical experiments: Results and discussion  

In this section, the algorithm performance is tested by numerical experiments using real road net-
work in Beijing. As adopting unmanned vehicles to delivery epidemic medicine is considered, we 
choose some of the hospitals in Beijing as the starting points for medicine distribution. The un-
manned vehicles start from the hospital to the community, and the road networks around the 
target hospitals are established as examples for testing. 

The algorithm is implemented using Python code in an Intel(R) Core (TM) i5-8250U CPU @ 
1.60 GHz and 8GB of RAM. The parameters of algorithm and unmanned vehicles are shown in 
Table 2, the example information is shown in Table 3. 
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Table 2 Algorithm parameters and unmanned vehicle performance parameter settings 
Parameters Value 

Crossover probability 0.8 
mutation probability 0.2 

Iterations of GA 100 
Iterations of MCTS 500 

Probability of encountering a red light 0.5 
Red light waiting time 90 seconds 

capacity of unmanned vehicle 20 pieces 

Table 3 Instance information table 

Instance name Number of cus-
tomer nodes 

Number of road 
nodes 

Number of traffic 
lights Total amount of nodes 

Hospital23 6 11 5 23 
Hospital29 8 17 3 29 
Hospital39 11 21 7 39 
Hospital58 15 28 14 58 

In this paper, three Beijing hospitals are selected as target hospitals, and two small-scale road 
networks and one medium-scale road network were established as examples. Example Hospital23 
is the Sixth Hospital of Peking University, with a road network consisting of 23 nodes; Example 
Hospital29 is Hospital 466, with a total of 29 nodes in the road network. Example Hospital39 is 
the Chinese Armed Police General Hospital, with a total of 39 nodes in the road network. Example 
Hospital58 is the Bayi Children’s Hospital, with a total of 58 nodes in the road network. The results 
of examples are shown in Figs. 7-10 respectively, where the road network is shown in Figs. (a) 
and the distribution results are shown in Figs. (b), and the green square nodes in Figs. (b) are 
customer demand nodes. Tables 4-7 show the specific distribution paths of each example. 

 
Fig. 7 Results of Hospital23 

Table 4 Detailed distribution paths of Hospital23 
Unmanned  

vehicle 
Customer  

nodes 
Load 

pieces 
Load  

Factor (%) 
Distribution 

path 
Times of passing 

through traffic lights 
1 21,13,1 16 80 0,2,21,13,12,1,0 0 
2 8,5 20 100 0,2,3,8,9,10,11,6,5,4,3,2,0 3 
3 19 15 75 0,2,21,13,14,15,19,15,14,13,21,2,0 2 
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Fig. 8 Results of Hospital29 

Table 5 Detailed distribution paths of Hospital29 

Unmanned 
vehicle 

Customer 
nodes 

Load 
pieces 

Load 
factor 

Distribution 
path 

Times of pass-
ing through 
traffic lights 

1 18,22,27 20 100 0,4,7,9,11,14,15,22,15,14,26
,17,18,17,10,27,9,7,4,0 0 

2 3 20 100 0, 4, 5, 3, 5, 4,0 0 
3 6 18 90 0, 4, 5, 6, 5, 4,0 0 
4 9,12 19 95 0, 4, 7, 9, 11, 12, 11, 9, 7, 4,0 0 
5 20 20 100 0, 1, 21, 20, 25, 8, 7, 4,0 0 
6 28 18 90 0,4,5,3,2,28,2,3,5,4,0 0 

 
Fig. 9 Results of Hospital39 

Table 6 Detailed distribution paths of Hospital39 
Unmanned 

vehicle 
Customer 

nodes 
Load 

pieces 
Load  

factor (%) 
Distribution 

path 
Times of passing 

through traffic lights 

1 8,15 20 100 0,4,3,9,10,12,15,35,14,8,1
4,35,15,12,10,9,3,4,0 0 

2 7,30 17 85 0,16,7,16,19,31,30,31,19,1
6,0 0 

3 22 18 90 0,16,7,1,23,22,23,1,7,16,0 4 

4 4,18,27 19 95 0,4,3,9,10,11,5,18,17,27,5,
9,3,4,0 2 

5 24,32,36 16 80 0,4,3,9,5,27,25,24,26,36,3
7,32,29,18,13,5,9,3,4,0 3 
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Fig. 10 Results of Hospital58  

Table 7 Detailed distribution paths of Hospital58 
Unmanned 

vehicle 
Customer 

nodes 
Load 

pieces 
Load 

factor (%) 
Distribution 

path 
Times of passing 

through traffic lights 

1 22,23 19 95 
0, 7, 8, 28, 27, 25, 24, 19, 
20, 23, 22, 26, 25, 27, 28, 

8,7,0 
4 

2 30,31,43,56,5
4 20 100 

0, 7,6,30,29, 31, 32, 34, 
42, 43, 45, 56, 54, 55, 46, 

48, 47, 40, 36, 6,7,0 
2 

3 17,18,8 17 85 0,1,11,14,17,18,15,10,9,
8,7,0 1 

4 14 15 75 0, 1, 11,14, 11, 1,0 0 
5 5 12 60 0, 7, 6, 5, 4, 1,0 0 

6 4,51 17 85 0, 1, 4, 37, 38, 39, 49, 48, 
51, 48, 47, 40, 36, 6, 7,0 4 

7 37 20 100 0, 1, 4, 37, 4, 1,0 0 

Table 8 Comparison of VRP-PF and VRP-SP 
Indicator Instance VRP-PF VRP-SP D 

Total time (min) 

Hospital23 20 23 -3 
Hospital29 44 50 -6 
Hospital39 59 69 -10 
Hospital58 64 79 -15 

Total distance (m) 

Hospital23 5742 5532 210 
Hospital29 11380 9680 1700 
Hospital39 15188 12352 2836 
Hospital58 16322 15243 1079 

Times of passing 
through traffic lights 

Hospital23 5 7 -2 
Hospital29 0 2 -2 
Hospital39 9 21 -12 
Hospital58 11 16 -5 

The results illustrate that 3 unmanned vehicles are required for delivery in Example Hospi-
tal23, with an average load factor of 85 %. 6 unmanned vehicles are required for delivery in Ex-
ample Hospital29, with an average load factor of 96 %. 5 unmanned vehicles are required for de-
livery in Example Hospital39, with an average load factor of 90 % and 7 unmanned vehicles are 
required for delivery in Example Hospital58, with an average load factor of 86 %. As Hospital23, 
Hospital39 and Hospital58 contains many traffic lights in the road networks, it is difficult to avoid 
going through the traffic lights during path selection. In the result of Example Hospital39, the 
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times of passing through traffic lights is obviously reduced. Table 8 shows the results of consider-
ing path flexibility compared with considering the shortest path between two points, where VRP-
PF is the results considering path flexibility using the algorithm proposed in this paper, VRP-SP is 
the results without considering path flexibility using Dijkstra algorithm to find the shortest path 
between two points. Meanwhile, D is the optimization difference, where the negative value means 
our algorithm got better results than Dijkstra algorithm.  

From the results, it can be seen that considering path flexibility can reduce the times of passing 
through traffic lights and improve the delivery efficiency at the expense of increasing the total 
path length. For the sake of presentation, the reduction in total distance is divided by a thousand 
to uniform the order of magnitude with other indicators in Fig. 11. It can be seen that in Example 
Hospital58, total time decreases 15 minutes compared with Dijkstra algorithm while total time 
only decreases 3 minutes in Example Hospital23. The times of passing through traffic lights re-
duces 5 and 12 times in Example Hospital58 and Hospital39 respectively while this indicator only 
reduce 2 times in Hospital29 and Hospital23. The optimization is more obvious in the case of com-
plex road network with more traffic lights. 

 
Fig. 11 Comparison of numerical examples 

 

5. Conclusion 
The normalization of epidemics has prompted the development of contactless distribution. In this 
paper, the path flexibility between demand points is considered when dealing with vehicle routing 
problem for unmanned vehicles. In the case where there are multiple feasible paths between two 
demand points, the number of traffic lights in the road network is considered from the perspective 
of driving safety of unmanned vehicles. We build the mathematic model of path flexibility vehicle 
routing problem with the objective to minimize the distribution time. The MCTS algorithm is used 
to select the feasible paths between two nodes, and the results are fed back to the genetic algo-
rithm for further optimization to finally determine the complete driving scheme. Finally, we adopt 
actual road networks in Beijing as examples, obtain solutions under different sizes of road net-
works, and the results show that the algorithm can select better paths with less driving time for 
different sizes of instances, and can maintain a high vehicle full load rate. Compared with routing 
problem that does not consider path flexibility, the results show that considering path flexibility 
can not only reduce the delivery time but also reduce the times of passing through traffic lights 
for unmanned vehicles. For more complex road conditions, the better results the algorithm can 
get.  

The algorithm considering path flexibility can not only be used for the routing planning of un-
manned vehicles in the distribution of emergency supplies, but also for the path planning of AGV 
picking and distribution in the warehouse. In the process of vehicle navigation, the algorithm 
based on Monte Carlo tree search can also flexibly take into account the driver's experience and 
other factors, and get better results in the congested road sections. Hence the algorithm proposed 
in this paper can also enrich the navigation algorithms. However, the method requires complete 
road network information in the process of preliminary data preparation, including node 
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coordinates, connectivity between nodes as well as distances and driving speed of segmented 
roads, which is the weakness of the algorithm. In addition, for unmanned vehicles, real-time road 
condition can also be considered to be passed into the algorithm to improve distribution efficiency 
while improving the ability of unmanned vehicles to cope with complex road conditions and driv-
ing safety. 
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