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A B S T R A C T A R T I C L E   I N F O 
With growing environmental concerns, the focus on greenhouse gases (GHG) 
emissions in transportation has increased, and the combination of smart 
microgrids and electric vehicles (EVs) brings a new opportunity to solve this 
problem. Electric vehicle routing problem with time windows (EVRPTW) is an 
extension of the vehicle routing problem (VRP) problem, which can reach the 
combination of smart microgrids and EVs precisely by scheduling the EVs. 
However, the current genetic algorithm (GA) for solving this problem can 
easily fall into the dilemma of local optimization and slow iteration speed. In 
this paper, we present an integer hybrid planning model that introduces time 
of use and area price to enhance realism. We propose the GA-A* algorithm, 
which combines the A* algorithm and GA to improve global search capability 
and iteration speed. We conducted experiments on 16 benchmark cases, 
comparing the GA-A* algorithm with traditional GA and other search algo-
rithms, results demonstrate significant enhancements in searchability and 
optimal solutions. In addition, we measured the grid load, and the model 
implements the vehicle-to-grid (V2G) mode, which serves as peak shaving and 
valley filling by integrating EVs into the grid for energy delivery and exchange 
through battery swapping. This research, ranging from model optimization to 
algorithm improvement, is an important step towards solving the EVRPTW 
problem and improving the environment. 
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1. Introduction
With global warming and environmental problems intensifying, more and more attention has 
been paid to reducing greenhouse gas emissions in transportation. New energy vehicles have 
emerged globally as an environmentally friendly and energy-efficient alternative [1], but face 
challenges in practical applications due to limitations in battery technology and charging facili-
ties [2]. To overcome these challenges, smart microgrids have emerged as a new type of energy 
management system, which can improve power sharing and power quality improvement and 
promote the sustainable development of new energy vehicles [3, 4]. Meanwhile, AI plays an im-
portant role in solving energy management problems in smart microgrids by applying various 
optimization methods and developing optimal energy management strategies, which can help to 
increase energy efficiency, reduce the total cost, and improve power quality [5]. 
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EVRPTW as an optimization problem, aims to efficiently plan the routes of electric vehicles to 
meet the time window constraints and minimize the total cost or maximize the benefits. It opti-
mizes the routes and charging strategies of electric vehicles to maximize the use of renewable 
energy and grid power for efficient energy management. By rationally arranging the use of 
charging stations and charging periods, it can reduce the dependence on the traditional grid and 
improve energy utilization. Meanwhile, by rationally planning the routes of electric vehicles, 
EVRPTW can reduce pollutant emissions and carbon footprint. Introducing EVs into smart mi-
crogrids and the whole grid, can promote the use of green energy and reduce dependence on oil 
and other limited resources. 

Keskin and Çatay first started working on the EVRPTW problem in 2016 and specifically stud-
ied the allowed partial charging problem (EVRPTW-PR), where they formulated the problem as 
0-1 mixed integer linear programming, developed an adaptive large neighborhood search 
(ALNS) algorithm, and used benchmark instances to test those solutions that can effectively find 
high quality solutions, As the result shows, the partial tolling scheme can substantially improve 
the routing decisions [6]. Keskin and Çatay reformulated the problem as mixed integer linear 
programming in 2018, where they built on the original by combining an ALNS method with an 
exact method equipped with various destroy-repair algorithms to efficiently explore neighbor-
hoods and using CPLEX to strengthen the obtained routes [7]. In 2019, Wang et al. constructed a 
mathematical model to minimize the total cost based on EVRPTW considering time windows 
and battery swapping stations (2E-EVRPTW-BSS) for the two-stage vehicle path problem of elec-
tric vehicles and verified the validity of the model [8]. Gocken and Yaktubay solved the VRPTW 
problem by applying first clustering and then using genetic algorithm solution for planning. 
Meanwhile different clustering algorithms are compared and finally the superiority of K-means 
algorithm for initialising the population is concluded [9]. In 2020, Raeesi and Zografos devel-
oped a program utilizing a two-phase hybrid of dynamic programming and integer program-
ming algorithms. The resulting program serves as the cornerstone of a robust, large neighbor-
hood search algorithm, designed for the rapid resolution of instances related to EVRPTW-SMBS 
[10]. In 2021, Zhu et al. applied the elitist genetic algorithm to the EV path problem with a time 
window [11]. Deng et al. studied the EV path problem with a time window and nonlinear charg-
ing constraints (EVRPTW-NL) and proposed an improved hybrid algorithm combining an im-
proved differential evolution (IDE) and several heuristics [12]. Bac and Erdem developed a se-
ries of neighborhood operators for the EVRPTW problem in the Variable Neighborhood Search 
(VNS) and Variable Neighborhood Drop (VND) heuristics for the local search process [13]. Lin et 
al. came out with EVRPTW (EVRPTW-TP) under time-varying tariffs, formulating it as an opti-
mal problem, proposing a Lagrangian relaxation method and a mixed-variable neighborhood 
search/tabu search heuristic to obtain high-quality lower bounds and feasible solutions, respec-
tively [14]. Lin et al. proposed an end-to-end deep reinforcement learning framework for solving 
the EVRPTW [15]. In 2022, Erdelić and Carić implemented the Adaptive Large Neighborhood 
Search (ALNS) meta-heuristic algorithm, utilizing the ruin-recreate strategy. This algorithm in-
tegrates a novel initial solution heuristic, partial search, path removal, and an exact procedure, 
resulting in the achievement of an optimal layout for charging stations. The results show that 
ALNS can find 38 new optimal solutions on the benchmark EVRPTW instance and that the ad-
vantages and disadvantages of using a partial charging strategy compared to a full charging 
strategy are evident [16]. In 2022, Niu et al. proposed the idea of consumers being able to choose 
multiple delivery addresses and used a large-scale neighbourhood search algorithm to facilitate 
further matching of logistics and distribution companies with customer needs [17]. In 2022, Liu 
et al. developed a hybrid Genetic Algorithm that combines the 2-opt algorithm with GA [18]. 
Ding designed an adaptive particle swarm optimization algorithm for the driving cycle based 
time window electric vehicle routing problem (EVRPTW-DC) to solve the problem [19]. In 2023, 
Kumar et al. proposed a firefly and ant colony algorithm with a new pad heuristic avoiding local 
optimums [20]. Kempton and Tomić first proposed electric vehicle-to-grid (V2G) technology, 
which utilizes large amounts of electric vehicle energy storage through interaction between elec-
tric vehicles and the grid to act as a buffer between the grid and renewable energy sources [21]. 
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In 2018, Shao et al. solved the EVRP model based on a hybrid genetic algorithm and used the 
dynamic Dijkstra algorithm to make some improvements to the classical Dijkstra algorithm [22]. 
In the same year, Wang et al. proposed to solve complex multi-objective problems based on a 
heuristic algorithm (ST-VNSGA) consisting of a variable neighbourhood search method and GA 
considering the spatiotemporal distance [23]. Zhu et al. investigated the path algorithm, and 
then used the elitist genetic algorithm and proposed an improved neighbour path initialization 
method to solve the EV routing problem [24]. Hien et al. proposed a greedy search algorithm 
GSGA inspired by clustering [25]. Wang et al. used Montecarlo tree search algorithm to improve 
the genetic algorithm, taking into account the flexibility of the paths and saving allocation time. 
The more complex the composition of the road network, the better the results obtained by the 
algorithm [26]. In 2023, Amiri et al. proposed developed two meta-heuristic algorithms includ-
ing Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Adaptive Large Neighbourhood 
Search (ALNS), and combined with multi-objective solution methods (e.g. weighted and epsilon 
constraints and hybrid methods) [27]. 

In this paper, based on the previous research, firstly, established an integer hybrid planning 
model for the EVRPTW problem that comprehensively considers multiple factors, including ve-
hicle fixed cost, energy cost, time cost, and penalty cost for violating constraints, which is closer 
to the actual engineering background. Meanwhile, the Time of use Pricing and Area price are 
introduced, and the EVs into the grid based on the V2G model realize the formation of a smart 
microgrid, which effectively acquires and delivers energy by means of the EVs swap under the 
dual perspectives of time and space. In particular, the use of the A* algorithm in the initializing 
population step allows for a better initial solution, which avoids the problem of slow iteration 
speed and satisfies the stochastic nature of genetic algorithms. Experiments demonstrate that 
the GA-A* algorithm performs well in solving the EVRPTW problem, applies to different sizes of 
arithmetic cases, and outperforms the traditional GA algorithm and other path planning algo-
rithms. In addition, it helps the smart microgrid not only achieves the successful reduction of the 
system's load peak-to-valley difference rate and mean square deviation based on the V2G model 
by incorporating EVs into the grid, effectively utilizing EVs to reduce the grid's volatility and 
improve the quality of power but also enables the EVs to rationally distribute energy in the grid 
by prioritizing the delivery of energy during peak hours of power consumption and acquiring 
energy during the trough hours of power consumption, which achieves a reasonable distribution 
of power. 

2. Methodology 
2.1 Math model 

The main problem investigated in this paper is the Electric-Vehicle Routing Problem with Time 
Windows (EVRPTW), which is described as a number of EVs transporting the required supplies 
from a distribution center to various customer nodes, where they can be charged or discharged 
at a charging station, which adopts battery swapping. On the one hand, swapping batteries sim-
plifies the model complexity, on the other hand, the replaced batteries can be used as part of a 
microgrid for charging and discharging operations, bringing profit to the grid operator. Verma 
confirmed that battery swapping leads to better path planning options for electric vehicles [28]. 
The objective function is to minimize the total cost including vehicle fixed cost, energy cost 
which considers the temperature coefficient, time cost, penalty cost for violating the load con-
straint, penalty cost for violating the time window, penalty cost for violating the power con-
straint, and charging and discharging cost. 

EVs are subject to constraints: 

• Each customer has a fixed amount of demand and is allowed to be served by only one ve-
hicle and only once; 

• EVs exist that the maximum load cannot exceed the maximum load capacity; 
• EVs have a battery capacity that cannot exceed the maximum battery capacity or a battery 

capacity that is less than zero; 
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• EVs depart from the distribution center in a fully charged state and eventually return to 
the charging center; 

• EVs are allowed to visit the charging station multiple times; 
• EVs are required to arrive by the latest time window or pay a penalty cost; 
• EVs arriving early at the customer node are not required to pay penalty costs, only time 

costs according to time. 
 

In the problem, the Time of use Pricing and area price are introduced to charge different pric-
es for 24 hours of the day according to different periods and in different areas. Higher prices are 
charged during the periods and areas with excessive electricity demand; conversely, the prices 
are lowered. The base load is referred to the data provided by Xiao et al. [29]. Fig. 1 shows the 24 
hours area price and the grid load at each moment, and the area price is set with reference to the 
data provided by Fu et al. [30]. Fig. 2 shows the area price and the grid load in different areas. 
Huo has demonstrated that ambient temperature has a great influence on the energy consump-
tion of EVs, and Fig. 3 shows the temperature curve fitted according to the data of this article 
[31]. Fig. 4 shows the annual time-averaged temperature profile for Beijing in 2022, with data 
from the National Oceanic and Atmospheric Administration (NOAA) National Center for Envi-
ronmental Information (NCEI). 

        
Fig. 1 Time of use pricing and grid loads                                              Fig. 2 Area price adjustment 

                
Fig. 3 Temperature-energy consumption per 100 km curve    Fig. 4 Beijing's annual average temperature time curve 

𝑦𝑦 = 0.000052307𝑥𝑥3 + 0.0069952𝑥𝑥2 − 0.37395𝑥𝑥 + 18.276 (1) 

Eq. 1 shows the fitted temperature-energy consumption per 100 km curve. 
Due to the short driving range of EVs, they need to be recharged at the charging station dur-

ing the driving process. In this paper, electric energy is recharged by swapping batteries and 
connected to the power grid to deliver/acquire energy. According to the impact of the Time of 
use Pricing and the area price, electricity is sold to the power grid for profit. V2G technology is 
introduced by simulating V2G based on the Time of use Pricing and the area price. This paper 
divides a day into 24 time periods, each with different electricity prices. During periods of high 
electricity demand, it is the peak period of electricity consumption, and the Time of use Pricing is 
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higher. Conversely, it is a low valley stage, and the Time of use Pricing is lower. Divide the entire 
map into different regions based on different datasets. In areas of peak electricity consumption, 
area prices are higher; conversely, area prices are lower. When the vehicle is charging, replace 
the battery with a fully charged battery at the charging station; When the vehicle is discharged, 
replace the battery at the charging station with enough power to support the next charging sta-
tion or distribution center. 

The EVRPTW model studied in this paper is, given a graph 𝐺𝐺 = (𝑁𝑁 ∪ 𝐸𝐸,𝐴𝐴), where the point 
set 𝑁𝑁 = {0,1,⋯ ,𝑛𝑛} represents a set of 𝑛𝑛 customers' points, where 0 represents a distribution 
center, 𝐸𝐸 = {𝑛𝑛,𝑛𝑛 + 1,⋯ ,𝑛𝑛 + 𝑚𝑚} represents m charging stations, 𝐴𝐴 = {(𝑖𝑖, 𝑗𝑗)|𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁 ∪ 𝐸𝐸, 𝑖𝑖 ≠ 𝑗𝑗|} 
represents all connected arcs in 𝑁𝑁 ∪ 𝐸𝐸. 

The symbol descriptions in the model are shown in Table 1. 

Table 1 Symbol description 
Symbol Instructions 
𝑂𝑂 Distribution center 
𝑁𝑁 Customer node set 
𝐾𝐾 Set of the number of EVs used 
𝐸𝐸 Charging Station set 
𝑉𝑉 All node set 
𝑑𝑑𝑖𝑖𝑖𝑖  Node 𝑖𝑖 to node 𝑗𝑗 traveling distance 
𝐷𝐷𝑖𝑖 Customer node 𝑖𝑖 demand 
𝐿𝐿mc Max. loading capacity of the vehicle 
𝐿𝐿𝑖𝑖𝑖𝑖 Remaining load at arrival of vehicle 𝑘𝑘 at node 𝑖𝑖 
𝐵𝐵𝑄𝑄 Max. battery capacity of vehicle 
𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 Remaining capacity at arrival of vehicle 𝑘𝑘 at node 𝑖𝑖 
𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙 Remaining capacity at left of vehicle 𝑘𝑘 at node 𝑖𝑖 
𝐸𝐸𝑖𝑖  Customer node 𝑖𝑖's earliest service time, 𝑖𝑖 ∈ 𝑁𝑁  
𝐿𝐿𝑖𝑖  Customer node 𝑖𝑖's latest service time, 𝑖𝑖 ∈ 𝑁𝑁  
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 Time at arrival of vehicle 𝑘𝑘 at node 𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁  
𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 Time at leaving of vehicle 𝑘𝑘 at node 𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁  
𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤 Waiting Time of vehicle 𝑘𝑘 at node 𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁  
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  Missing Time of vehicle 𝑘𝑘 at node 𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁  
𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 Service/Swap Time of vehicle 𝑘𝑘 at node 𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁  
𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 Time at driving of vehicle 𝑘𝑘 from node 𝑖𝑖 to node 𝑗𝑗, 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁  
𝑣𝑣 velocity of vehicles traveling in distribution 
𝜇𝜇 Battery consumption rate 
𝑇𝑇𝑇𝑇𝑇𝑇γ𝑘𝑘 𝛾𝛾 time vehicle 𝑘𝑘 traveling ambient temperature coefficient 
𝐶𝐶𝑑𝑑 Cost per distance 
𝐶𝐶1 Penalty costs for violating load constraints 
𝐶𝐶2 Penalty costs for violating the time window 
𝐶𝐶3 Penalty costs for violating electricity constraints 
𝐶𝐶𝑡𝑡 Cost per time 
𝑆𝑆𝛾𝛾𝛾𝛾 𝛾𝛾 time area 𝜃𝜃 price 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 No EVs in the original grid 𝛾𝛾 time area 𝜃𝜃 power 

 
The EVRPTW model proposed in this paper is improved from the mathematical model pro-

posed by Li et al. [32], and on this basis, increases the Time of use Pricing, Area price, and ambi-
ent temperature coefficient. On the one hand, it is closer to the real working environment, and 
on the other hand, it can help regulate and store electricity in space, which can better improve 
energy quality and play a role in energy distribution. According to the description of the 
EVRPTW problem, the objective function includes vehicle fixed cost, energy cost which consid-
ers the temperature coefficient, time cost, penalty cost for violating load constraints, penalty 
cost for violating time windows, penalty cost for violating energy constraints, and charging and 
discharging cost. A mathematical model for this problem is established. 

Decision variables: 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = �1, Vehicle 𝑘𝑘 from customer 𝑖𝑖 to customer 𝑗𝑗
0, otherwise   
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𝑌𝑌𝑘𝑘 = �1, vehicle 𝑘𝑘 violated the power constraints
0, otherwise   

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝑜𝑜 �𝑋𝑋𝑘𝑘
𝑘𝑘∈𝐾𝐾

+ 𝐶𝐶1�𝑚𝑚𝑚𝑚𝑚𝑚[0,𝐷𝐷𝑘𝑘 − 𝐿𝐿𝑚𝑚𝑚𝑚]
𝑘𝑘∈𝐾𝐾

+ 𝐶𝐶2�� 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝑉𝑉

  

+𝐶𝐶3� 𝑌𝑌𝑘𝑘
𝑘𝑘∈𝐾𝐾

+ 𝐶𝐶𝑑𝑑����𝑇𝑇𝑇𝑇𝑇𝑇𝛾𝛾𝛾𝛾𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

24

𝛾𝛾=1𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝑉𝑉𝑖𝑖∈𝑉𝑉

 (2) 

+𝐶𝐶𝑡𝑡���(𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠)
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝑉𝑉𝑖𝑖∈𝑉𝑉

+ ����𝑃𝑃𝛾𝛾𝛾𝛾�𝑆𝑆𝛾𝛾𝛾𝛾
𝑘𝑘∈𝐾𝐾

𝑛𝑛

𝜃𝜃=1

24

𝛾𝛾=1

  

� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑁𝑁,𝑖𝑖≠𝑗𝑗

= 1,∀𝑗𝑗 ∈ 𝑁𝑁,𝑘𝑘 ∈ 𝐾𝐾 (3) 

� 𝑋𝑋0𝑗𝑗𝑗𝑗 ≤ 1
𝑗𝑗∈𝑉𝑉，𝑖𝑖≠𝑗𝑗

,𝑘𝑘 ∈ 𝐾𝐾 (4) 

� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑉𝑉𝑉𝑉≠𝑗𝑗

− � 𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖∈𝑉𝑉𝑉𝑉≠𝑗𝑗

= 0,∀𝑗𝑗 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾 (5) 

0 ≤ 𝐷𝐷𝑗𝑗 ≤ 𝐿𝐿𝑖𝑖𝑖𝑖 − 𝐷𝐷𝑖𝑖, 𝑖𝑖 ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾 (6) 

0 ≤�𝐷𝐷𝑖𝑖𝑖𝑖 ≤ 𝐿𝐿𝑚𝑚𝑚𝑚 ,∀𝑘𝑘 ∈ 𝐾𝐾
𝑖𝑖∈𝑁𝑁

 (7) 

0 ≤ 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑇𝑇𝑇𝑇𝑇𝑇𝛾𝛾𝛾𝛾𝑑𝑑𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝜇𝜇,∀𝑖𝑖 ∈ 𝑁𝑁, 𝑗𝑗 ∈ 𝑁𝑁,𝑘𝑘 ∈ 𝐾𝐾 (8) 

� 𝑇𝑇𝑇𝑇𝑇𝑇𝛾𝛾𝛾𝛾𝑑𝑑𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝜇𝜇
𝑖𝑖,𝑗𝑗∈𝑉𝑉

≤ 𝐵𝐵𝑙𝑙𝑙𝑙 ≤ 𝐵𝐵𝑄𝑄 , 𝑖𝑖 ∈ 𝐺𝐺 (9) 

0 ≤ 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝐵𝐵𝑄𝑄 ,∀𝑖𝑖 ∈ 𝑉𝑉, 𝑘𝑘 ∈ 𝐾𝐾 (10) 

𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙 ,∀𝑖𝑖 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾 (11) 

𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚𝑚𝑚[0, 𝑒𝑒𝑖𝑖 − 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎],∀𝑖𝑖 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾 (12) 

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚[0, 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑙𝑙𝑖𝑖],∀𝑖𝑖 ∈ 𝑁𝑁,𝑘𝑘 ∈ 𝐾𝐾 (13) 

𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤,∀𝑖𝑖 ∈ 𝑁𝑁 ∪ 𝐺𝐺 (14) 

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖
𝑣𝑣

,∀𝑖𝑖 ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾 (15) 

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖)𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ,∀ 𝑖𝑖 ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑁𝑁 ∪ 𝐺𝐺,𝑘𝑘 ∈ 𝐾𝐾 (16) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = {0,1},∀ 𝑖𝑖 ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾 (17) 

𝑌𝑌𝑘𝑘 = {0,1},∀𝑘𝑘 ∈ 𝐾𝐾 (18) 

The objective function (Eq. 2) represents the minimum total cost, including vehicle fixed cost, 
energy consumption cost, time cost, charging and discharging cost, and penalty cost. Among 
them 𝑆𝑆𝛾𝛾𝛾𝛾 are the Time of use Pricing and Area price. When the battery is discharged, 𝑆𝑆𝛾𝛾𝛾𝛾 is nega-
tive, i.e. when the cost of charging and discharging is negative, it means that the charging and 
discharging process is generally profitable. Constraint Eq. 3 indicates that each customer is 
served only once. In the cost of time penalty, waiting time is not included in the penalty, but ra-
ther placed within the cost of time. We believe that this can improve the efficiency of resource 
allocation. Constraint Eq. 4 indicates that only one transport vehicle is arranged for each distri-
bution route. Constraint Eq. 5 indicates equal number of vehicles entering and exiting. Con-
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straint Eq. 6 indicates that the demand of the vehicle at the next node cannot be higher than the 
remaining demand of the vehicle at the current node minus the demand at the current node. 
Constraint Eq. 7 indicates that all demands of a transportation route must not exceed the maxi-
mum load capacity. Constraint Eq. 8 indicates that the remaining power upon reaching the next 
node must not be less than the current node's power minus the power consumption from that 
node to the next node. Constraint Eq. 9 indicates that the energy consumption after charging and 
discharging at the charging station is not less than the energy consumption of the sub path and 
not higher than the maximum energy consumption. Constraint Eq. 10 indicates that the remain-
ing electricity at any point is not negative. Constraint Eq. 11 indicates that the remaining elec-
tricity is unchanged before and after the vehicle visits the customer node. Constraint Eq. 12 rep-
resents the calculation method of waiting time. Constraint Eq. 13 represents the calculation 
method of late time. Constraint Eq. 14 indicates that the time of a vehicle leaves the node is the 
sum of arrival time, waiting time, and service time. Constraint Eq. 15 represents the calculation 
method of the time taken by the vehicle from node 𝑖𝑖 to node 𝑗𝑗. Constraint 16 indicates that the 
time for the vehicle to reach the next node is equal to the sum of the time to leave the current 
node and the time spent on the journey. Constraints Eqs. 17 and 18 are binary 0-1 variables. 

2.2 Algorithm 

To solve the Electric-Vehicle Routing Problem with Time Windows, this paper proposes an im-
proved genetic algorithm GA-A*. Genetic algorithm has the advantages of starting from the 
population, having potential for parallelism, using evaluation functions for inspiration, simple 
processes, probability mechanisms for iteration, and randomness. However, genetic algorithms 
have certain dependencies in initial population selection, which may lead to the problem of fall-
ing into local optimal solutions. 

To overcome these problems, this paper introduces the A* algorithm as part of the improved 
genetic algorithm. The A* algorithm is a heuristic search algorithm that guides the search pro-
cess by evaluating the cost function and heuristic function of nodes. It has high efficiency and 
accuracy in path search. The purpose of introducing the A* algorithm is to optimize the initial set 
of points by solving for the optimal path and cutting it into seed nodes. Then, by randomly creat-
ing other nodes as genes, the initialized population is formed. Such an improvement measure 
aims to improve the search efficiency and effectively avoid the occurrence of local optimal solu-
tions. 

This paper chooses to introduce the A* algorithm. Firstly, it can evaluate nodes through heu-
ristic functions to quickly find the optimal path. Secondly, the A* algorithm has good perfor-
mance and accuracy in solving the optimal path problem. By applying the A* algorithm to the 
optimization of the initial point set, the quality of the initial population can be improved, provid-
ing a better starting point for the search process of genetic algorithms. Finally, this improvement 
by introducing the A* algorithm helps to improve the overall algorithm's ability to solve the 
EVRPTW and provides better results. 

The pseudo-code of the GA-A* algorithm is shown in Fig. 5. Through this improvement, this 
paper aims to overcome the limitations of traditional genetic algorithms and improve the effi-
ciency and quality of solving path planning problems. 

Firstly, based on the A* algorithm, the optimal path passing through all nodes is obtained and 
the path is divided into sub-paths according to the needs of the customer nodes. Then sort the 
remaining unincorporated nodes by time window order, and insert randomly signed charging 
station nodes to generate multiple genes as the initial population. Using decimal signed encoding 
to represent genes, including information such as customer nodes, charging nodes, and distribu-
tion centers. The fitness function considers vehicle costs, energy consumption costs, time costs, 
and penalty costs for constraint violations. Selection, using the roulette selection method. Cross-
over, using the first 1/3 encoding after crossover to replace the last 1/3 encoding before crosso-
ver. Variation, using an elitist strategy to retain elitist individuals, varies general genes, gener-
ates multiple genes, and calculates the fitness to retain the highest term. Multiple iterations are 
performed to obtain the final path encoding. 
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Fig. 5 GA-A* pseudo-code 

2.3 Experimental design 

To evaluate the performance of the model and algorithm. In this paper, 16 test cases were se-
lected. Test cases are derived from a shared database [33]. In these cases, each customer node 
has different requirements, and each example has a different charging station and number of 
customers. For example, the case "R-2-C-40" means that there are two charging stations and 
forty customers in the case. To test the performance of the GA-A* algorithm, experiments were 
designed to test it against the conventional GA, and referred to the data made by Li et al using 
adaptive large neighbourhood search (ALNS), large neighbourhood search (LNS), and variable 
neighbourhood search (VNS) algorithms [32] for comparison. The algorithm is written in Python 
and the test platform is Intel Xeon E5-2680 v4. 

3. Result 
3.1 Simulation results 

The algorithm was used to test the optimal path under 16 groups of different cases, Some of the 
initial maps are shown in Fig. 6 for 30, 50, 70 and 120 charging station nodes. 

Fig. 7 shows the paths plotted from the optimal paths derived from the GA-A* operation with 
other methods. 
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Fig. 6 Initial map 

 

 
Fig. 7 Route map 



Wang, Ding, Chen, Zhang 
 

412 Advances in Production Engineering & Management 18(4) 2023 
 

 
Fig. 8 Grid load comparison 

 

As shown in Fig. 7, the algorithm can find the route that fulfils the conditions and ensures the 
correctness of the solution. After that, the paper tests the effect of the GA-A* algorithm on the 
power grid at different times, and the experimental results show that the GA-A* algorithm has a 
good effect on power sharing and power quality. 

Fig. 8 shows better power distribution under the GA-A* algorithm scheduling. Most of the 
charging time is concentrated between 21:00 and 3:00 the next day, which is in the off-peak pe-
riod of electricity consumption. The discharge time is concentrated from 9:00 to 19:00, which is 
in the peak period of power consumption, the peak load decreases from the original 11403.73 
kW to 11365.10 kW, and the peak differential rate decreases from the original 41.50-41.27 %. 
Charging when the electricity price is low and discharging when the electricity price is high, fully 
shows that the scheduling function of the GA-A* algorithm can cut peak and fill the valley and 
reduce the charging cost. As shown in Table 2. 

Due to the existence of area price, the area price can be used to regulate loads in different ar-
eas of the grid. As shown in Fig. 9, if the charging station is in a region with low electricity prices, 
the route is more concerned with charging in this region; if it is in a region with high electricity 
prices, the route is more concerned with discharging in this region. 

 
Table 2 Load characteristic index in the different scenarios 

scenarios Max. load (kW) Min. load (kW) mean square peak-to-valley ratio (%) 
original grid 11403.73 6670.81 1846.76 41.50 

GA-A* 11365.10 6675.15 1825.69 41.27 

 
Fig. 9 Zonal grid load changes 
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3.2 Comparison with other methods 

Fig. 10 shows the comparison between the GA-A* algorithm and the traditional GA algorithm. As 
shown in the figure, the iteration speed of GA-A* is significantly faster than that of the GA algo-
rithm, and it enters the low value region 89 times and completes the iteration quickly. The 
shortest distance produced by GA-A* is also significantly smaller than the optimal solution pro-
duced by GA. 

  
Fig. 10 GA-A* versus GA 

Table 3 shows the comparison results between GA-A* and the other three algorithms. It is 
found that the GA-A* algorithm has a better optimization effect than the other three algorithms. 
In comparison to LNS, VNS, and ALNS, the average reduction is 281.41, -67.43, and 207.80 km, 
respectively. The results show that the optimization effect of GA-A* is significantly higher than 
that of LNS and ALNS. 

Table 3 Load characteristic index in the different scenarios 

case 
optimal solution /km 

GA-A* LNS VNS ALNS 
r-8-c-120 3282.46 3617.30 3160.50 3602.10 
r-8-c-70 2067.05 2382.70 1938.40 2242.20 
r-8-c-50 1401.98 1672.30 1419.90 1646.70 
r-8-c-30 947.25 1333.30 983.60 1145.50 

r-6-c-120 2428.78 2132.90 1841.20 2479.10 
r-6-c-70 1791.31 2196.80 1767.40 2057.80 
r-6-c-50 1536.47 2417.70 1556.90 1784.40 
r-6-c-30 820.92 1469.90 828.50 1009.10 
r-4-c-80 2249.17 2369.50 2181.10 2465.90 
r-4-c-70 1975.49 2305.20 2117.10 2310.90 
r-4-c-50 1469.40 1532.80 1327.90 1583.60 
r-4-c-30 849.50 1087.90 881.10 1043.10 
r-2-c-90 2455.17 2722.80 2285.50 2707.10 
r-2-c-70 1934.04 2054.20 1842.20 2099.90 
r-2-c-50 1369.70 1575.50 1357.60 1569.80 
r-2-c-30 873.24 1083.70 884.20 1029.50 

4. Discussion 
In the process of solving the EVRPTW problem, in order to reduce the total cost in the transpor-
tation process and make the model closer to the actual engineering background, we comprehen-
sively consider several factors and establish the model by using integer mixed programming. 
These factors include the fixed cost of the vehicle, energy cost which considers the temperature 
coefficient, the cost of time, the penalty cost of violating the load constraint, the penalty cost of 
violating the time window, and the penalty cost of violating the power constraint and the charge 
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and discharge cost. Through such comprehensive consideration, we obtained a model of 
EVRPTW that is more in line with the actual engineering context. 

By introducing the Time of use Pricing and Area price, we have reached the V2G model, inte-
grating EVs into the grid, and realizing the transportation and exchange of energy is realized. By 
means of power swapping for electric vehicles, we have achieved the purpose of forming a smart 
microgrid. In this mode, EVs can choose to deliver energy during peak hours of electricity con-
sumption and obtain energy during low hours of electricity consumption according to the de-
mand of the power grid, rationalizing the distribution of electric energy, reducing the peaks and 
valleys and volatility of the load on the power grid, and improving the quality of electric energy. 
V2G mode makes EVs become part of the power grid, participate in the transportation and ex-
change of energy, and make full use of the energy storage capacity and flexibility of EVs through 
intelligent energy scheduling and control. 

In terms of algorithm, we improve the steps of initializing the population and introduce the 
A* algorithm to obtain a better initial solution. By combining GA and A* algorithm, we not only 
avoid the problem of slow iteration speed of the genetic algorithm but also meet the randomness 
requirement of GA. Experimental results show that this GA-A* algorithm can provide correct 
path planning, and has better iteration speed and optimization quality when solving EVRPTW 
problem. Compared with the traditional genetic algorithm, our algorithm shows obvious ad-
vantages in iteration speed and optimal solution quality. Compared with other different types of 
path planning algorithms, such as LNS, ALNS, and VNS algorithms, our algorithm also shows 
better performance and can get good results in different scale examples. In some specific cases 
as shown in Table 3 it can be seen that the distance of GA-A* is less than the solution derived by 
VNS for small scale cases with eighty client nodes, but in large scale cases VNS shows better per-
formance. This paper argues that the implementation of the VNS algorithm searches a wider 
space of solutions in variable neighbourhoods, no matter the size of the arithmetic case can find 
a better solution by means of global search. VNS follows this feature for solutions at different 
scales, whereas GA-A*, which has fixity in its initialisation, shows better performance in small 
scale solving. In this paper, we argue that GA-A* has significantly outperformed other algorithms 
under the path length perspective for small-scale problems, and some algorithms for large-scale 
problems; it outperforms other algorithms under the perspective for spatio-temporal deploy-
ment of energy consumption. The algorithm has been initialised in such a way as to find the op-
timal solution passing through all nodes, so that there is a certain degree of similarity between 
the initialised population and the final solution for the small-scale example in the global solu-
tion; the algorithm outperforms other algorithms in terms of energy consumption because it 
takes into account the spatio-temporal tariffs. There are also some weaknesses in that the initial-
ised population is still somewhat fixed even with the addition of random values, so larger than 
large-scale arithmetic cases lack global search capability. So introduction of the A* algorithm as 
part of the initialization allows the genetic algorithm to start searching for a better initial solu-
tion. This combination can fully utilize the advantages of the two algorithms and improve the 
search efficiency and solution quality of the algorithm. 

In summary, by comprehensively considering multiple practical factors and establishing an 
integer mixed programming model, introducing Time of use Pricing and Area price as well as the 
V2G model, and combining the genetic algorithm and A* algorithm for optimization, we have 
made remarkable progress in solving EVRPTW problem. Our model and algorithm can better 
conform to the actual engineering background, obtain a better solution, improve the efficiency 
and quality of power grid energy management, and bring a positive impact on the operation of 
smart microgrid and the entire power grid. Such as Wang et al. used heuristics and collision 
avoidance algorithms for collaborative scheduling planning of multiple AGVs [34]. GA-A* can be 
generalised to AGVs in industrial manufacturing for logistics optimisation tasks such as optimal 
routing through improvements. 
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5. Conclusion 
To solve the EVRPTW, this paper comprehensively considers multiple factors in reality and 
takes the minimum total cost as the model proposes the GA-A* algorithm which introduces the 
A* algorithm, and tests 16 cases of four groups of different scales. Experiments show that com-
pared with the traditional GA algorithm and other algorithms, it has a certain optimization ef-
fect. The algorithm itself can provide a solution to the np-hard problem and get the right route. 
At the same time, based on the V2G mode, the smart microgrid can reduce fluctuations and im-
prove power quality, and the reasonable spatio-temporal allocation of EVs plays a role in peak-
ing and valley filling for the entire power grid. 

The GA-A* algorithm introduced in this paper can provide better path planning in the search 
process, but it may face the problem of too long computation time when dealing with large-scale 
problems. Therefore, for larger scale EVRPTW problems, it may be necessary to further optimize 
the efficiency of the algorithm. At the same time, in practical problems, there are often multiple 
conflicting objectives that need to be optimized, The GA-A* algorithm can be further extended. 
Therefore, to solve the above problems, we can consider further optimizing the efficiency of the 
algorithm, such as introducing a pruning strategy or parallel computing. Multi-Objective Optimi-
zation can be supported by improvement, such as considering the problem of simultaneously 
optimizing total cost and total time. 

References 
[1] Yilmaz, M., Krein, P.T. (2013). Review of the impact of vehicle-to-grid technologies on distribution systems and 

utility interfaces, IEEE Transactions on Power Electronics, Vol. 28, No. 12, 5673-5689, doi: 10.1109/TPEL.2012. 
2227500. 

[2] Abdulaal, A., Cintuglu, M.H., Asfour, S., Mohammed, O.A. (2017). Solving the multivariant EV routing problem 
incorporating V2G and G2V options, IEEE Transactions on Transportation Electrification, Vol. 3, No. 1, 238-248, 
doi: 10.1109/TTE.2016.2614385. 

[3] Norouzi, F., Hoppe, T., Ramirez Elizondo, L., Bauer, P. (2022). A review of socio-technical barriers to Smart Mi-
crogrid development, Renewable and Sustainable Energy Reviews, Vol. 167, Article No. 112674, doi: 10.1016/ 
j.rser.2022.112674. 

[4] Yoldaş, Y., Önen, A., Muyeen, S.M., Vasilakos, A.V., Alan, İ. (2017). Enhancing smart grid with microgrids: Chal-
lenges and opportunities, Renewable and Sustainable Energy Reviews, Vol. 72, 205-214, doi: 10.1016/j.rser.2017. 
01.064. 

[5] Khan, A.A., Naeem, M., Iqbal, M., Qaisar, S., Anpalagan, A. (2016). A compendium of optimization objectives, con-
straints, tools and algorithms for energy management in microgrids, Renewable and Sustainable Energy Reviews, 
Vol. 58, 1664-1683, doi: 10.1016/j.rser.2015.12.259. 

[6] Keskin, M., Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing problem with time win-
dows, Transportation Research Part C: Emerging Technologies, Vol. 65, 111-127, doi: 10.1016/j.trc.2016.01.013. 

[7] Keskin, M., Çatay, B. (2018). A matheuristic method for the electric vehicle routing problem with time windows 
and fast chargers, Computers & Operations Research, Vol. 100, 172-188, doi: 10.1016/j.cor.2018.06.019. 

[8] Wang, D., Zhou, H., Feng, R. (2019). A two-echelon vehicle routing problem involving electric vehicles with time 
windows, Journal of Physics: Conference Series, Vol. 1324, No. 1, Article No. 012071, doi: 10.1088/1742-6596/ 
1324/1/012071. 

[9] Gocken, T., Yaktubay, M. (2019). Comparison of different clustering algorithms via genetic algorithm for VRPTW, 
International Journal of Simulation Modelling, Vol. 18, No. 4, 574-585, doi: 10.2507/IJSIMM18(4)485. 

[10] Raeesi, R., Zografos, K.G. (2020). The electric vehicle routing problem with time windows and synchronised 
mobile battery swapping, Transportation Research Part B: Methodological, Vol. 140, 101-129, doi: 10.1016/j.trb. 
2020.06.012. 

[11] Zhu, Y., Lee, K.Y., Wang, Y. (2021). Adaptive elitist genetic algorithm with improved neighbor routing initializa-
tion for electric vehicle routing problems, IEEE Access, Vol. 9, 16661-16671, doi: 10.1109/ACCESS.2021.3053 
285. 

[12] Deng, J., Li, J., Li, C., Han, Y., Liu, Q., Niu, B., Liu, L., Zhang, B. (2021). A hybrid algorithm for electric vehicle routing 
problem with nonlinear charging, Journal of Intelligent & Fuzzy Systems, Vol. 40, No. 3, 5383-5402, doi: 10.3233/ 
JIFS-202164. 

[13] Bac, U., Erdem, M. (2021). Optimization of electric vehicle recharge schedule and routing problem with time 
windows and partial recharge: A comparative study for an urban logistics fleet, Sustainable Cities and Society, 
Vol. 70, Article No. 102883, doi: 10.1016/j.scs.2021.102883. 

[14] Lin, B., Ghaddar, B., Nathwani, J. (2021). Electric vehicle routing with charging/discharging under time-variant 
electricity prices, Transportation Research Part C: Emerging Technologies, Vol. 130, Article No. 103285, doi: 
10.1016/j.trc.2021.103285. 

https://doi.org/10.1109/TPEL.2012.2227500
https://doi.org/10.1109/TPEL.2012.2227500
https://doi.org/10.1109/TTE.2016.2614385
https://doi.org/10.1016/j.rser.2022.112674
https://doi.org/10.1016/j.rser.2022.112674
https://doi.org/10.1016/j.rser.2017.01.064
https://doi.org/10.1016/j.rser.2017.01.064
https://doi.org/10.1016/j.rser.2015.12.259
https://doi.org/10.1016/j.trc.2016.01.013
https://doi.org/10.1016/j.cor.2018.06.019
https://doi.org/10.1088/1742-6596/1324/1/012071
https://doi.org/10.1088/1742-6596/1324/1/012071
https://doi.org/10.2507/IJSIMM18(4)485
https://doi.org/10.1016/j.trb.2020.06.012
https://doi.org/10.1016/j.trb.2020.06.012
https://doi.org/10.1109/ACCESS.2021.3053285
https://doi.org/10.1109/ACCESS.2021.3053285
https://doi.org/10.3233/JIFS-202164
https://doi.org/10.3233/JIFS-202164
https://doi.org/10.1016/j.scs.2021.102883
https://doi.org/10.1016/j.trc.2021.103285
https://doi.org/10.1016/j.trc.2021.103285


Wang, Ding, Chen, Zhang 
 

416 Advances in Production Engineering & Management 18(4) 2023 
 

[15] Lin, B., Ghaddar, B., Nathwani, J. (2022). Deep reinforcement learning for the electric vehicle routing problem 
with time windows, IEEE Transactions on Intelligent Transportation Systems, Vol. 23, No. 8, 11528-11538, doi: 
10.1109/TITS.2021.3105232. 

[16] Erdelić, T., Carić, T. (2022). Goods delivery with electric vehicles: Electric vehicle routing optimization with time 
windows and partial or full recharge, Energies, Vol. 15, No. 1, Article No. 285, doi: 10.3390/en15010285. 

[17] Niu, X.Y., Liu, S.F., Huang, Q.L. (2022). End-of-line delivery vehicle routing optimization based on large-scale 
neighbourhood search algorithms considering customer-consumer delivery location preferences, Advances in 
Production Engineering & Management, Vol. 17, No. 4, 439-454, doi: 10.14743/apem2022.4.447. 

[18] Liu, Q., Xu, P., Wu, Y., Shen, T. (2022). A hybrid genetic algorithm for the electric vehicle routing problem with 
time windows, Control Theory and Technology, Vol. 20, No. 2, 279-286, doi: 10.1007/s11768-022-00091-1. 

[19] Ding, N., Yang, J., Han, Z., Hao, J. (2022). Electric-vehicle routing planning based on the law of electric energy 
consumption, Mathematics, Vol. 10, No. 17, Article No. 3099, doi: 10.3390/math10173099. 

[20] Kumar, A., Aggarwal, A., Rani, A., Bedi, J., Kumar, R. (2023). A mat-heuristics approach for electric vehicle route 
optimization under multiple recharging options and time-of-use energy prices, Concurrency and Computation: 
Practice and Experience, Vol. 35, No. 27, Article No. e7854, doi: 10.1002/cpe.7854.  

[21] Kempton, W., Tomić, J. (2005). Vehicle-to-grid power fundamentals: Calculating capacity and net revenue, Jour-
nal of Power Sources, Vol. 144, No. 1, 268-279, doi: 10.1016/j.jpowsour.2004.12.025. 

[22] Shao, S., Guan, W., Bi, J. (2018). Electric vehicle-routing problem with charging demands and energy consump-
tion, Intelligent Transport System, Vol. 12, No. 3, 202-212, doi: 10.1049/iet-its.2017.0008. 

[23] Wang, X.P., Wang, M., Ruan, J.H., Li, Y. (2018). Multi-objective optimization for delivering perishable products 
with mixed time windows, Advances in Production Engineering & Management, Vol. 13, No. 3, 321-332, doi: 
10.14743/apem2018.3.293. 

[24] Zhu, Y., Li, C., Lee, K.Y. (2022). The NR-EGA for the EVRP problem with the electric energy consumption model, 
Energies, Vol. 15, No. 10, Article No. 3681, doi: 10.3390/en15103681. 

[25] Hien, V.Q., Dao, T.C., Binh, H.T.T. (2023). A greedy search based evolutionary algorithm for electric vehicle rout-
ing problem, Applied Intelligence, Vol. 53, No. 3, 2908-2922, doi: 10.1007/s10489-022-03555-8. 

[26] Wang, Y.D., Lu, X.C., Song, Y.M., Feng, Y., Shen, J.R. (2022). Monte Carlo Tree Search improved Genetic Algorithm 
for unmanned vehicle routing problem with path flexibility, Advances in Production Engineering & Management, 
Vol. 17, No. 4, 425-438, doi: 10.14743/apem2022.4.446. 

[27] Amiri, A., Zolfagharinia, H., Amin, S.H. (2023). A robust multi-objective routing problem for heavy-duty electric 
trucks with uncertain energy consumption, Computers & Industrial Engineering, Vol. 178, Article No. 109108, 
doi: 10.1016/j.cie.2023.109108. 

[28] Verma, A. (2018). Electric vehicle routing problem with time windows, recharging stations and battery swap-
ping stations, EURO Journal on Transportation and Logistics, Vol. 7, No. 4, 415-451, doi: 10.1007/s13676-018-
0136-9. 

[29] Xiao, H., Pei, W., Kong, L. (2017). Multi-objective optimization scheduling method for active distribution network 
with large scale electric vehicles, Transactions of China Electrotechnical Society, Vol. 32, No. 202, 179-189. 

[30] Fu, R., Qiu, Y.S., Li, Y. (2007). A fuzzy clustering method for price partition based on the sensitivity of node price, 
Power Demand Side Management, No. 3, 19-22, doi: 10.3969/j.issn.1009-1831.2007.03.009. 

[31] Huo, Y.L. (2022). Research on energy consumption model energy-saving path planning of BEV, doi: 10.27162/ 
d.cnki.gjlin.2022.004541. 

[32] Li, J.L., Liu, Z.B., Wang, X.F. (2021). Distribution path optimization of electric vehicles considering charging and 
discharging strategy in smart grid, Journal of South China University of Technology (Natural Science Edition), Vol. 
49, No. 10, 31-40. 

[33] Zhang, S., Chen, M., Zhang, W., Zhuang, X. (2020). Fuzzy optimization model for electric vehicle routing problem 
with time windows and recharging stations, Expert Systems with Applications, Vol. 145, Article No. 113123, doi: 
10.1016/j.eswa.2019.113123. 

[34] Wang, Y.J., Liu, X.Q., Leng, J.Y., Wang, J.J., Meng, Q.N., Zhou, M.J. (2022). Study on scheduling and path planning 
problems of multi-AGVs based on a heuristic algorithm in intelligent manufacturing workshop, Advances in Pro-
duction Engineering & Management, Vol. 17, No. 4, 505-513, doi: 10.14743/apem2022.4.452. 

                                                                                                                    
                                                                                                                              
                                                                                                                                                     
                                                                                                                                                                                                                          
                                                                                                                                   
                                                                                                                                                                
                                                                                                                                                   
                                                                                                                                                       
                                                                                                                                                     
                                                                                                                                
                                                                                                                                              
                                                                                                                                                                                               
                                                                                                                                                                                                                                    

                                                                                                                                                                                                                      
                                                                                                                                                                                                
                                                                                                                                                                                                                          . 

https://doi.org/10.1109/TITS.2021.3105232
https://doi.org/10.1109/TITS.2021.3105232
https://doi.org/10.3390/en15010285
https://doi.org/10.14743/apem2022.4.447
https://doi.org/10.1007/s11768-022-00091-1
https://doi.org/10.3390/math10173099
https://doi.org/10.1002/cpe.7854
https://doi.org/10.1016/j.jpowsour.2004.12.025
https://doi.org/10.1049/iet-its.2017.0008
https://doi.org/10.14743/apem2018.3.293
https://doi.org/10.14743/apem2018.3.293
https://doi.org/10.3390/en15103681
https://doi.org/10.1007/s10489-022-03555-8
https://doi.org/10.14743/apem2022.4.446
https://doi.org/10.1016/j.cie.2023.109108
https://doi.org/10.1007/s13676-018-0136-9
https://doi.org/10.1007/s13676-018-0136-9
https://doi.org/10.3969/j.issn.1009-1831.2007.03.009
https://doi.org/10.27162/d.cnki.gjlin.2022.004541
https://doi.org/10.27162/d.cnki.gjlin.2022.004541
https://doi.org/10.1016/j.eswa.2019.113123
https://doi.org/10.1016/j.eswa.2019.113123
https://doi.org/10.14743/apem2022.4.452

