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ABSTRACT

ARTICLE INFO

In this study, the modelling of arithmetical mean roughness after turning of C45
steel was performed. Four parameters of cutting tool geometry were varied,
i.e.: corner radius r, approach angle k, rake angle y and inclination angle A. After
turning, the arithmetical mean roughness Ra was measured. The obtained val-
ues of Ra ranged from 0.13 um to 4.39 um. The results of the experiments
showed that surface roughness improves with increasing corner radius, in-
creasing approach angle, increasing rake angle, and decreasing inclination an-
gle. Based on the experimental results, models were developed to predict the
distribution of the arithmetical mean roughness using the response surface
method (RSM), Gaussian process regression with two kernel functions, the se-
quential exponential function (GPR-SE) and Mattern (GPR-Mat), and decision
tree regression (DTR). The maximum percentage errors of the developed mod-
els were 3.898 %, 1.192 %, 1.364 %, and 0.960 % for DTR, GPR-SE, GPR-Mat,
and RSM, respectively. In the worst case, the maximum absolute errors were
0.106 um, 0.017 um, 0.019 pm, and 0.011 pm for DTR, GPR-SE, GPR-Mat, and
RSM, respectively. The results and the obtained errors show that the developed
models can be successfully used for surface roughness prediction.
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1. Introduction

Turning plays an important role in machining. It can be achieved in several ways. The steps that
need to be taken must be carefully defined to achieve the desired quality, lower cost and shorter
production time. Roughness is an important quality indicator of the machining surface, as it affects
the performance of the product, but also the production costs [1]. Numerous factors affect the
quality of the machining surface: machining conditions (machine tool rigidity, vibrations, use of
cutting fluid, type of cutting fluid, etc.), machining parameters (cutting speed, feed rate and depth
of cut), material properties of the workpiece (chemical composition, mechanical properties, phys-
ical properties, thermal properties, etc.), and cutting tool parameters (geometry, material, coating,
etc.) [2-4]. Cutting tool geometry has a great influence on dimensional accuracy, shape accuracy,
tool wear, residual stress, chip shape, cutting force, heat distribution, hardness variation, vibra-
tion, and surface roughness.
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Various methods have been proposed in the literature that have investigated the effects of tool
geometry on surface roughness during turning. For example, Zerti et al. [5] studied the effects of
corner radius, approach angle, and machining parameters on surface topography. Davoudinejad
and Noordin [6] presented the effect of chamfer and honed edge geometry on surface finish. Zhao
et al. [7] presented the effect of edge radius on surface roughness. Duc et al. [8] investigated the
effect of cutting edge angle, rake angle, and inclination angle on surface roughness. Neseli et al. [9]
investigated the influence of corner radius, approach angle and rake angle on surface roughness.
Ashish and Lokesha [10] presented the effect of rake angle, approach angle, and process parame-
ters on surface roughness. Karim et al. [11] studied the effects of different rake angles on surface
roughness. Kumar et al. [12] determined the effect of corner radius and approach angle, as well as
turning parameters on the surface roughness. Cui et al. [13] performed an optimization of corner
radius, rake angle and approach angle. Sung et al. [14] studied the effect of corner radius micro
deviation on surface roughness. Ponugoti et al. [15] studied the surface roughness after turning
with variable cutting speed, feed, depth of cut, corner radius and negative rake angle. Senthilku-
mar and Tamizharasan [16] analyzed the influence of insert shape, relief angle, and corner radius
on surface roughness. Tauhiduzzaman and Veldhuis [17] investigated the role of tool geometry
on roughness using a tool with a rounded primary cutting edge and a flat secondary cutting edge.
Abainia and Ouelaa [18] studied the effect of rake angle, approach angle, and inclination angle on
surface roughness. Mohammad et al. [19] studied the effects of approach angle, rake angle, and
inclination angle on surface roughness. Hai et al. [20] studied the surface quality with different
corner radii, cutting speeds, and feeds. Khellaf et al. [21] presented a comparison of surface rough-
ness with coated and uncoated mixed ceramics. Ozdemir [22] investigated the influence of turning
parameters and corner radius on surface roughness. Kuntoglu et al. [23] investigated the influence
of turning parameters and approach angle on surface roughness. In addition, some studies com-
pared the machined surface quality of conventional and wiper inserts after turning operations
[24, 25]. The results showed that the wiper insert had better surface roughness performance com-
pared to conventional inserts.

In analyzing the previous research in this field, which investigates the effects of tool geometry
on surface roughness, experimental research dominates. The results obtained can only be applied
to the conditions under which the experiments were conducted, and the associated cost and time
cannot be neglected. To streamline this process, it is possible to model it. Response surface meth-
odology, Taguchi method, artificial neural networks and fuzzy logic are most commonly used to
model the turning process [26-28]. Most of the previous research dealt with the effects of machin-
ing parameters (cutting speed, feed rate, depth of cut) on the output parameters of the process
[29-32].

Soft computing methods were predominantly used for modelling the turning process. When
the turning process is properly modelled and the errors in predicting surface roughness are
within acceptable limits, the cost and time of experimental investigations are reduced and the
subjective influence of the technologist on the results obtained is diminished. There is also greater
universality and thus the possibility of practical application. The most important question is which
method should be used and when, because each of them has advantages, but also disadvantages.
Despite some existing guidelines, it is still not possible to define an algorithm for selecting an ap-
propriate method for specific production conditions. The error between the predicted and exper-
imental values must be within acceptable limits for the prediction model to be used in practice.
Finally, the results of all surface roughness prediction methods should converge with increasing
accuracy, leading to an integration that accounts for all possible variables. All prediction methods
require significant resources to achieve the desired goals. Therefore, it is critical to select an ap-
propriate modelling method and formulate a sufficiently accurate model.

In contrast to previous studies, the objective of this study is to evaluate the influence of four
cutting tool geometry parameters, which have not been extensively studied in the literature, on
surface roughness. The input parameters were the corner radius r, the approach angle x, the rake
angle y and the inclination angle A, while the output parameter was the arithmetical mean rough-
ness Ra. For the obtained results, the modelling of the finish turning was performed with DTR,
GPR-SE and GPR-Mat, which were also not previously used for modelling the turning process.
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2. Materials and methods

The methodological framework used in the research is shown in Fig. 1. The experimental studies
were carried out on a DMG Mori CTX 510 Ecoline CNC lathe. Dry external longitudinal turning was
performed on a workpiece with dimensions @50 x 600 mm. The workpiece was fixed and clamped
by means of the chuck and rotating centre.

The tests were carried out on workpieces made of medium-carbon steel C45, whose chemical
composition is 0.42-0.50 % C, 0.50-0.80 % Mn, < 0.4 % Si, < 0.045 % P, <0.045% S, < 0.4 % Cr, <
0.4 % Ni, < 0.1 % Mo, and < 0.63 % Cr+Mo+Ni. In addition, the mechanical and physical properties
were as follows: density 7.87 g/cm3, hardness 163 HB, tensile strength 565 MPa, modulus of elas-
ticity 200 GPa, and Poisson's ratio 0.29.

Turning parameters were set for all tests: cutting speed v. = 440 m/min, feed rate f = 0.10
mm/rev, and depth of cut a, = 1.5 mm. The parameters were chosen in accordance with the rec-
ommendations of the manufacturers of the turning inserts.

CVD-coated (TiCN+Al;03+TiN) turning inserts were used for the experiments. All inserts had
the same parameters: effective cutting edge length 10.34 mm, insert thickness 3.175 mm, in-
scribed circle diameter 6.35 mm, and clearance angle 7°. A new turning insert was used for each
experiment. The geometrical parameters of the inserts varied during the experiments are listed
in Table 1.

The study was conducted in accordance with the randomized full factorial experiment, which
allows the analysis of all combinations of input quantity levels. A total of 34 = 81 experiments were
performed.
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Fig. 1 Methodological framework

Table 1 Turning insert geometry levels (input variables)

Table 2 Measurement conditions

Input parameters Level Parameter Value
Low Medium High Sampling length 0.8 mm
Corner radius, r (mm) 0.4 0.8 1.2 Cut-off wavelength 0.8 mm
Approach angle, k (°) 60 75 90 Evaluation length 4 mm
Rake angle, y (°) 3 6 9 Stylus tip diamond ball
Inclination angle, A (°) -3 0 3 Stylus radius 2 um
Stylus force 1 mN
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After each experiment, the surface roughness Ra was measured. The measurement was per-
formed using a Talysurf 6 measuring instrument, under the conditions listed in Table 2. The sur-
face roughness was measured at six evenly spaced locations along the cut length. The average
value from these measurements was taken as the mean value of the surface roughness.

After the experiments were conducted, process modelling was performed based on the ob-
tained results, i.e., prediction of surface roughness with: RSM, DTR, GPR-SE and GPR Mat.

3. Results

3.1 Results of experimental research

The results of experimental research, i.e. the measured values of Ra for different combinations of
input parameters, are presented in Table 3.

Table 3 Results of experimental research

Run r K y A Ra Run r K y A Ra Run r K y A Ra
ord. (mm) () () () (um) ord (mm) () () () (um) ord (mm) () () () (um)
1 0.8 60 3 -3 138 28 0.4 60 6 -3 276 55 0.4 60 3 0 286
2 0.8 60 6 3 1.39 29 1.2 75 9 0 084 56 0.4 75 3 -3 274
3 0.4 90 6 3 2.65 30 0.4 60 6 3 284 57 1.2 60 9 3 088
4 0.4 9 6 -3 261 31 1.2 75 9 -3 084 58 1.2 75 3 0 0.88
5 1.2 90 9 -3 081 32 1.2 90 6 0 084 59 0.4 60 6 0 280
6 0.8 90 3 3 1.33 33 0.4 90 3 3 272 60 0.8 90 9 0 127
7 1.2 75 6 0 086 34 0.4 90 6 0 263 61 0.8 75 9 0 130
8 0.8 75 6 0 1.33 35 1.2 90 6 -3 083 62 1.2 90 6 3 084
9 0.4 90 9 0 258 36 0.4 75 6 0 271 63 0.8 75 9 3 131
10 0.4 60 3 3 291 37 1.2 60 9 -3 087 64 0.8 75 3 0 136
11 0.4 90 9 3 2.60 38 0.8 60 9 -3 134 65 1.2 90 9 0 082
12 0.4 75 9 -3 264 39 1.2 75 6 3 087 66 0.8 60 6 0 137
13 1.2 75 9 3 0.85 40 1.2 90 3 0 086 67 0.8 90 6 0 129
14 0.4 90 3 -3 268 41 0.8 90 9 -3 126 68 1.2 90 3 3 086
15 1.2 60 3 0 091 42 1.2 60 6 -3 087 69 1.2 60 3 3 093
16 1.2 60 6 3 091 43 1.2 75 3 -3 087 70 0.8 90 3 -3 131
17 0.4 75 6 -3 269 44 0.8 60 6 -3 135 71 0.8 60 3 3 142
18 0.8 75 9 -3 129 45 0.8 90 3 0 1.32 72 1.2 60 9 0 087
19 0.8 90 6 -3 128 46 0.4 75 9 0 266 73 0.8 60 3 0 140
20 1.2 90 3 -3 085 47 0.8 90 9 3 1.28 74 1.2 90 9 3 083
21 0.4 75 3 0 277 48 0.8 75 3 3 1.37 75 1.2 60 6 0 089
22 0.4 75 3 3 2.80 49 0.8 90 6 3 1.30 76 0.8 75 6 3 134
23 0.4 60 9 0 275 50 0.4 90 3 0 269 77 0.4 60 9 3 278
24 1.2 60 3 -3 0.89 51 0.4 75 9 3 268 78 0.4 60 3 -3 281
25 0.8 60 9 0 1.35 52 0.8 75 6 -3 132 79 0.4 90 9 -3 256
26 0.8 60 9 3 1.36 53 1.2 75 6 -3 085 80 1.2 75 3 3 089
27 0.4 75 6 3 2.73 54 0.8 75 3 -3 135 81 0.4 60 9 -3 272

3.2 Response surface method

The experimental data (Table 3) were statistically processed using Design Expert software (ver-
sion DX8, 8.0.7.1) and a regression model was derived to predict the surface roughness. Fig. 2
shows the response surface plots of surface roughness resulting from the regression model. Fig. 2
shows that changing the approach angle k, rake angle y, and inclination angle A does not signifi-
cantly change the surface roughness (Figs. 2a and 2c), while increasing the corner radius r signif-
icantly affects the reduction in surface roughness (Figs. 2b and 2d).

Table 4 shows the ANOVA for the reduced quadratic regression model. The nonsignificant in-
teraction terms AD, BC, BD, CD, and the quadratic term A2 as well as the terms related to interac-
tions between the three factors and higher-order interactions have been removed.

Below is the regression model in terms of the coded (Eq. 1) and the natural (actual) (Eq. 2)
input variables.

In Ra = 0.28 + 0.010 -A—0.021-B — 0.031-C—0.57-D —1.731-103-A-B —3.286- 1073 - )
A-C+203-1073-B?+2.395-107%-C?* + 0.14 - D?
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In Ra = 2.24998 + 0.010042 - 2 —9.5811-1073 - y— 3.63354 1073 - x— 2.82799 - r — 1.92283 -
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Fig. 2 Response surface plots of surface roughness, a) with approach angle x and corner radius r at the intermediate
levels, b) with rake angle y and approach angle k at the intermediate levels, c) with rake angle y and corner radius r at
the intermediate levels, d) with inclination angle A and rake angle y at the intermediate levels

Table 4 ANOVA for response surface reduced quadratic model

Source Sum of Squares DF Mean Square F Value p-value, Prob > F
Model 18.18 9 2.02 164684.3 <0.0001
A - inclination angle A 0.005657 1 0.005657 461.19 <0.0001
B - rake angle y 0.023 1 0.023 1872.60 <0.0001
C - approach angle x 0.050 1 0.050 4110.92 <0.0001
D - corner radius r 17.75 1 17.75 1447116 <0.0001
AB 0.0001078 1 0.0001078 8.79 0.0041
AC 0.0003887 1 0.0003887 31.69 <0.0001
B2 7.416 - 10-5 1 7.416 - 10-5 6.05 0.0164
C2 0.0001032 1 0.0001032 8.41 0.0050
D2 0.35 1 0.35 28543.75 <0.0001
Residual 0.0008709 71 1.227 - 10-5

Cor Total 18.18 80

Table 5 lists the regression coefficient for each model term, their standard errors, and 95 per-
cent confidence intervals (95 % CI). Confidence intervals are ranges within which the true regres-
sion coefficients must fall. In the table, these ranges are low for the intercept, the regression coef-
ficients of A, B, C, D, and D2, while they are high for AB, AC, B, and C2. However, it is important that
the regression coefficients do not span zero, because that would mean that a single regression
coefficient can be zero, i.e., that a particular factor has no effect.

Residual analysis follows as an important technique for analyzing regression models. Fig. 3
shows the constructed normal probability plot of the internally studentized residuals to check the
assumption of normality of the residuals or errors. From Fig. 3, it can be seen that the error dis-
tribution is approximately normal as the graph resembles the straight line. There are small devi-
ations from the straight line at the extremes, but this is not the case for most of the intermediate
values. It is also clear that all internally studentized residuals are within £3 standard deviations
from zero (studentized residuals have unit variance), which means that there are no outliers. This
is also evident from Fig. 4, which shows the plot of internally studentized residuals against four
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factors. Fig. 4 also shows that for the factor D (corner radius r), there is some rule for the depend-
ence of the residuals on this factor, i.e. some pattern. Although both positive and negative inter-
nally studentized residuals occur (which is fine), there is still smaller scatter for the smaller corner
radius and larger for the larger corner radius, which means that it is not a completely constant
variance. This is mainly affected by only four internally studentized residuals, i.e., for the experi-
ments labelled 5 and 42 (Run ord.) in Table 3 (the internally studentized residuals are -2.59 and -
2.53, respectively) and for experiments 37 and 16 (the internally studentized residuals are 2.68
and 2.95, respectively). These samples were rechecked and it was found that there were no pos-
sible errors in the measurement or recording of the results.

Table 5 Standard errors and confidence intervals for regression coefficients

Term Coefficient Estimate  DF Standard Error 95 % CI Low 95 % CI High
Intercept 0.28 1 1.030-10-3 0.281 0.285
A - inclination angle (1) 0.010 1 4.766 - 10-4 0.00928 0.011
B - rake angle (y) -0.021 1 4.766 - 10-4 -0.0216 -0.01967
C - approach angle (k) -0.031 1 4.766 - 10-4 -0.0315 -0.0296
D - corner radius (r) -0.57 1 4.766 - 10-4 -0.574 -0.572
AB -1.731-10-3 1 5.837-10-4 -2.89-10-3 -5.67 - 10-4
AC -3.286-10-3 1 5.837-10-4 -4.45-10-3 -2.12-10-3
B2 2.030-10-3 1 8.255-10-4 3.84-10-4 3.68-10-3
C2 2.395-10-3 1 8.255-10-4 7.485-10-4 4.04-10-3
D2 0.14 1 8.255 - 10-4 0.138 0.141
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Fig. 4 Residuals versus factors, a) Residuals versus inclination angle A, b) Residuals versus rake angle y,
c) Residuals versus approach angle k, d) Residuals versus corner radius r
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3.3 Decision tree regression

A decision tree is a machine learning algorithm that can be used for both classification and regres-
sion. It is one of the most commonly used practical approaches for supervised learning [33]. In
regression, the goal of a decision tree-based model is to predict a continuous output value for a
given multivariate input data instance. The model is trained on the given training dataset
{(x;, ¥y}, € R™ x R, where x; is an m-dimensional input vector and y; is the corresponding out-
put value. Based on this dataset, a tree-structured regression model is built, as shown in Fig. 1,
which consists of three types of nodes. The root node is the initial node which represents the
whole dataset. It is split into additional nodes according to the decision (or division) rules con-
tained in both the root node and all subsequent nodes. The interior nodes represent the features
of the dataset, and the branches represent the decision (i.e., division) rules. Finally, the leaf nodes
represent terminal parts and provide the output results.

The basicidea is to split the entire dataset into groups of "similar" samples, using decision rules
contained in interior nodes, applied to input variables x; [34]. In the decision tree regression prob-
lems, the criterion for dataset splitting is the variance of the output value y;:

var = %2521(% - y)? (3)

where n is the total number of samples in the node and y is the mean of the output values of all
samples in the node. Each "parent” node is divided into two "child" nodes. All possible ways of
splitting the dataset in a given node are considered, and the one that provides the greatest vari-
ance reduction defined as follows:

VarRed = var(parent) — Y7, w,var(child;) (4)

is adopted. In the Eq. 4, w; is the ratio between the number of elements in the child node and the
total number of elements in the parent node. In other words, we split the dataset each time into
two new sets, each containing “similar” data, while at the same time the obtained sets differ as
much as possible. The described process of node splitting is performed until the desired depth of
the tree is reached, which depends on the complexity of the problem.

Once the tree model is trained, it can be used to obtain the predicted value for each new data
sample. Following the division rules for the input values x;, starting from the root node through all
the interior nodes, the data sample can be grouped to one of the terminal nodes. The predicted
value for that data sample is calculated as the average value of the output values y; of all the data
samples from the training dataset that were grouped to that particular terminal node.

In this study, the following turning process parameters were used as inputs x; to x,: corner
radius r, approach angle k, rake angle y, and inclination angle A. The value of the surface roughness
Ra was taken as the output parameter y. The tree model was built using Matlab and the application
Regression learner, which has three variants for the tree depth according to the maximum number
of splits: low, medium and fine tree. All variants were tested, and the fine tree variant, which al-
lows a maximum of 100 splits, was adopted based on the mean square error (MSE) value in the 5-
fold cross-validation training procedure. The minimum number of samples per node was set at
five, which was determined by a trial-and-error procedure. The cross-validation procedure was
also used to remove unnecessary branches to avoid overfitting.

3.4 Gaussian process regression

A Gaussian processes regression is a powerful machine learning technique that can be used to
solve a wide variety of supervised learning problems, even when only a small amount of training
data is available. It is a probability distribution over possible functions matching a set of points,
given with the training dataset {(x;, y;)}}.; € R™ X R, as described previously. The Gaussian pro-
cess regression is not given in the form of a function, but in a nonparametric form. Thus, instead
of computing the probability distribution of the parameters of a specific function, GPR calculates
the probability distribution over all admissible functions that fit the data in the dataset.
The regression function modelled by Gaussian process regression has the following form:
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P(f1X) = N(flu K) (5)

where X = [x1, %2, .., Xy, f = [f(x1), f(x2), oo, f ()], 0 = [m(x1), m(x3), ..., m(xy)] and K;j =
k(xl-, xj). X are the observed input data, m represents the mean function, and K represents a posi-
tive definite kernel function, that defines the smoothness of the function, i.e., if the points x; and
x; are considered similar by the kernel, the function outputs of the two points, f(x;) and f(xj) are
expected to be similar. Given the points of the training dataset and a mean function festimated by
these points, one can make predictions for each new dataset X, as f (X,) with a certain confidence
interval depending on the values and distribution of the training dataset. The simple one-dimen-
sional GPR regression is shown in Fig. 1. Based on the training data (black dots), the mean function
is determined (green line), and it gives predictions for all new data points X, with the confidence
interval marked in grey.

If we introduce f, as a prediction for a new dataset X,, we can express the joint distribution of

f and f, as follows:
[~ (medl e« ©

where K = K(X,X), K, = K(X,X,) and K,, = K(X,, X,). To be able to make a prediction, we need
to derive the conditional distribution P(f.|f, X, X,) = N (f|u, K). This derivation is given in detail
in [35], obtaining:

In real applications, however, we do not need exact function values, but rather the noisy ver-
sion of the data, y = f(x) + &, where we assume that ¢ is an additive independent and identically
distributed (i.i.d.) Gaussian noise with a variance ¢, that can be determined from the training da-
taset. The variance function then becomes cov(y) = K + 021, and the joint distribution of the ob-
served points (training dataset) and the function values at new dataset points:

A= (ol % €] ®

By deriving the conditional distribution, we get the predictive equations for Gaussian pro-
cesses regression as follows:

Fly X, X, ~ I (foycov(£) (9)
fo 2 E[fly. X, X.] = KT[K + o211ty cov(f.) = K., — KT[K + o211 7'K, (10)

The practical implementation algorithm for Eqgs. 8 to 10 is described in [35]. The best results
were obtained with the quadratic exponential kernel (SE) and Matern kernel. The values of kernel
parameters were optimized using marginal likelihood as the objective function [35].

3.5 The results of the prediction

Of the total 81 experiments, 72 were used for training and 9 for confirmation. Table 6 shows the
results of the training dataset, and Table 7 shows the modelling results of the confirmation da-
taset. The strength of the modelling, i.e., the deviation between the measured Ra value (Raim) and
the predicted Ra value (Raiyv), was estimated by the absolute error (AE) and the percentage error
(PE) as follows:

AE = |Rajp, — Ry, | (11)

_ |Raipv - Raimvl

PE <100 % (12)

R Aimy
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Table 6 Modelling results of the training dataset

Ra (pm) PE (%) AE (pm)
E E T T2 « 8 2. 0= = 8 2 o= = 8 Lo 9=
E ¢ = ~~~ K g 53 & E g &3 & § g &2 3
&) &) &)
1 08 60 3 -3 1368 1378 1.380 1382 0906 0.139 0.025 0.170 0.013 0.002 0.000 0.002
2 08 60 6 3 1368 1396 1.395 1391 1.619 0464 0391 0.060 0.023 0.006 0.005 0.001
3 04 90 6 3 2.625 2,650 2.650 2.651 0943 0.001 0.004 0.046 0.025 0.000 0.000 0.001
4 04 90 6 -3 2.625 2612 2613 2615 0.575 0.077 0.110 0.177 0.015 0.002 0.003 0.005
5 1.2 90 9 -3 0.832 0.812 0.813 0.817 2.675 0.191 0318 0.835 0.022 0.002 0.003 0.007
6 08 90 3 3 1.294 1328 1329 1332 2.726 0.149 0.084 0.142 0.036 0.002 0.001 0.002
7 12 75 6 0 0866 0.859 0.860 0.860 0.698 0.072 0.047 0.039 0.006 0.001 0.000 0.000
8 08 75 6 0 1335 1327 1328 1328 0.376 0.263 0.185 0.175 0.005 0.003 0.002 0.002
9 04 90 9 0 2.625 2581 2581 2584 1.744 0.043 0.049 0.168 0.045 0.001 0.001 0.004
10 04 60 3 3 2.804 2906 2908 2907 3.651 0.135 0.061 0.107 0.106 0.004 0.002 0.003
11 04 90 9 3 2.625 2.600 2601 2598 0962 0.017 0.039 0.082 0.025 0.000 0.001 0.002
13 12 75 9 3 0.832 0.848 0.849 0.852 2157 0.191 0.120 0.200 0.018 0.002 0.001 0.002
14 04 90 3 -3 2.625 2.674 2.675 2.670 2.052 0.224 0.180 0.377 0.055 0.006 0.005 0.010
15 12 60 3 0 0.894 0909 0908 0910 1.786 0.117 0.171 0.052 0.016 0.001 0.002 0.000
16 12 60 6 3 0.894 0904 0905 0901 1.786 0.628 0.543 0960 0.016 0.006 0.005 0.009
17 04 75 6 -3 2.723 2,686 2.687 2.680 1.208 0.139 0.103 0.354 0.033 0.004 0.003 0.010
19 08 90 6 -3 1.294 1.281 1.281 1.282 1.074 0.070 0.047 0.146 0.014 0.001 0.001 0.002
20 1.2 90 3 -3 0848 0.851 0851 0.848 0.235 0.116 0.062 0.210 0.002 0.001 0.001 0.002
21 04 75 3 0 2.723 2771 2769 2770 1.715 0.023 0.024 0.004 0.047 0.001 0.001 0.000
22 04 75 3 3 2.723 2799 2799 2803 2.768 0.025 0.027 0.123 0.077 0.001 0.001 0.003
23 04 60 9 0 2.804 2748 2.749 2.747 1955 0.064 0.043 0.101 0.054 0.002 0.001 0.003
24 12 60 3 -3 0.894 0.888 0.889 0.896 0.421 0.229 0.168 0.648 0.004 0.002 0.001 0.006
25 08 60 9 0 1368 1349 1.348 1347 1296 0.105 0.117 0.231 0.017 0.001 0.002 0.003
26 08 60 9 3 1368 1364 1.363 1363 0.551 0.286 0.230 0.210 0.007 0.004 0.003 0.003
27 04 75 6 3 2.723 2735 2733 2736 0.275 0.181 0.117 0.217 0.007 0.005 0.003 0.006
28 04 60 6 -3 2.804 2760 2.760 2.761 1.585 0.015 0.008 0.043 0.044 0.000 0.000 0.001
29 1.2 75 9 0 0.832 0.843 0.843 0.844 0992 0.364 0307 0.534 0.008 0.003 0.003 0.004
30 04 60 6 3 2804 2837 2.837 2.837 1276 0.091 0.111 0.110 0.036 0.003 0.003 0.003
31 1.2 75 9 -3 0832 0839 0838 0837 0992 0.144 0.215 0317 0.008 0.001 0.002 0.003
34 04 90 6 0 2.625 2631 2631 2633 0.190 0.032 0.028 0.108 0.005 0.001 0.001 0.003
35 1.2 90 6 -3 0.848 0.828 0.829 0.831 2169 0.220 0.102 0.078 0.018 0.002 0.001 0.001
36 04 75 6 0 2.723 2710 2709 2.708 0.461 0.001 0.021 0.072 0.013 0.000 0.001 0.002
38 08 60 9 -3 1368 1.338 1338 1331 2.052 0.180 0.139 0.665 0.027 0.002 0.002 0.009
39 12 75 6 3 0.866 0.867 0.868 0.869 0.460 0.327 0.214 0.093 0.004 0.003 0.002 0.001
40 12 90 3 0 0.848 0.856 0.857 0.856 1.395 0.450 0300 0.511 0.012 0.004 0.003 0.004
41 08 90 9 -3 1.294 1257 1256 1260 2.679 0.223 0.349 0.034 0.034 0.003 0.004 0.000
42 12 60 6 -3 089 0873 0871 0877 2.730 0.313 0.160 0.830 0.024 0.003 0.001 0.007
43 1.2 75 3 -3 0866 0871 0.870 0.870 0.460 0.122 0.024 0.048 0.004 0.001 0.000 0.000
44 08 60 6 -3 1368 1353 1353 1354 1.296 0.188 0.203 0.276 0.017 0.003 0.003 0.004
45 08 90 3 0 1.294 1321 1321 1320 1989 0.086 0.073 0.029 0.026 0.001 0.001 0.000
46 04 75 9 0 2.723 2,660 2.660 2.658 2350 0.004 0.007 0.069 0.063 0.000 0.000 0.002
47 08 90 9 3 1.294 1.276 1276 1.274 1.074 0318 0.306 0496 0.014 0.004 0.004 0.006
48 08 75 3 3 1335 1374 1374 1374 2,555 0.278 0.283 0.325 0.035 0.004 0.004 0.004
49 08 90 6 3 1.294 1298 1299 1300 0481 0.172 0.103 0.015 0.006 0.002 0.001 0.000
50 04 90 3 0 2.625 2.692 2.692 2693 2416 0.067 0.062 0.118 0.065 0.002 0.002 0.003
51 04 75 9 3 2.723 2680 2.680 2.681 1586 0.009 0.007 0.032 0.043 0.000 0.000 0.001
52 08 75 6 -3 1335 1317 1318 1314 1.136 0.240 0.128 0.443 0.015 0.003 0.002 0.006
53 12 75 6 -3 0866 0.852 0.852 0852 1.882 0.240 0.181 0.185 0.016 0.002 0.002 0.002
54 08 75 3 -3 1.335 1.347 1347 1342 1.111 0.229 0.206 0.597 0.015 0.003 0.003 0.008
55 04 60 3 0 2.804 2858 2857 2863 1967 0.079 0.101 0.101 0.056 0.002 0.003 0.003
56 04 75 3 -3 2.723 2743 2743 2.737 0.639 0.109 0.093 0.104 0.018 0.003 0.003 0.003
57 12 60 9 3 0.894 0.880 0.881 0.883 1.562 0.009 0.089 0.356 0.014 0.000 0.001 0.003
58 1.2 75 3 0 0866 0.880 0.880 0.880 1.591 0.012 0.001 0.005 0.014 0.000 0.000 0.000
60 08 90 9 0 1.294 1266 1267 1267 1870 0344 0.268 0.234 0.024 0.004 0.003 0.003
61 08 75 9 0 1.335 1303 1303 1303 2.692 0.202 0.232 0.248 0.035 0.003 0.003 0.003
62 1.2 90 6 3 0.848 0.844 0.843 0.842 0952 0.520 0.394 0.271 0.008 0.004 0.003 0.002
63 08 75 9 3 1335 1311 1.311 1314 1908 0.068 0.058 0.332 0.025 0.001 0.001 0.004
64 08 75 3 0 1335 1359 1359 1358 1.838 0.054 0.078 0.140 0.025 0.001 0.001 0.002
65 1.2 90 9 0 0.832 0.822 0.822 0.821 1.423 0.203 0.224 0.126 0.012 0.002 0.002 0.001
66 08 60 6 0 1368 1373 1371 1372 0.182 0.192 0.098 0.157 0.003 0.003 0.001 0.002
68 1.2 90 3 3 0.848 0.861 0.860 0.863 1395 0.074 0.021 0.357 0.012 0.001 0.000 0.003
69 12 60 3 3 0.894 0932 0931 0924 3898 0.210 0.130 0.698 0.036 0.002 0.001 0.006
70 08 90 3 -3 1.294 1315 1313 1309 1.240 0417 0.255 0.078 0.016 0.005 0.003 0.001
72 1.2 60 9 0 0.894 0.870 0.870 0.873 2.730 0.043 0.015 0.319 0.024 0.000 0.000 0.003
73 08 60 3 0 1368 1.406 1406 1.404 2321 0403 0399 0.257 0.033 0.006 0.006 0.004
74 1.2 90 9 3 0.832 0.832 0.830 0.825 0.201 0.215 0.012 0.563 0.002 0.002 0.000 0.005
75 1.2 60 6 0 0.894 0.887 0.887 0.889 0421 0.283 0.284 0.095 0.004 0.003 0.003 0.001
76 08 75 6 3 1335 1338 1.338 1341 0373 0.120 0.134 0.100 0.005 0.002 0.002 0.001
77 04 60 9 3 2804 2.778 2779 2.780 0.854 0.063 0.037 0.007 0.024 0.002 0.001 0.000
78 04 60 3 -3 2.804 2812 2811 2820 0.222 0.063 0.047 0.341 0.006 0.002 0.001 0.010
79 04 90 9 -3 2.625 2563 2562 2571 2539 0.108 0.074 0.425 0.065 0.003 0.002 0.011
81 04 60 9 -3 2804 2721 2721 2715 3.079 0.047 0.041 0.183 0.084 0.001 0.001 0.005
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Table 7 Modelling results of the confirmation dataset

Ra (pm) PE (%) AE (pm)
5 E C 2 2 2 g s P~ 2 g = ~ & (2““ s
2 2 X X < £ & e 2 8 & e & a & & &
o S o S © S
12 04 75 9 -3 2.723 2.642 2.642 2636 3.125 0.065 0.065 0.165 0.083 0.002 0.002 0.004
18 08 75 9 -3 1335 1.297 1.298 1.292 3488 0.557 0.581 0.169 0.045 0.007 0.008 0.002
32 1.2 90 6 0 0.848 0.837 0.838 0.836 0.952 0.407 0.244 0.423 0.008 0.003 0.002 0.004
33 04 90 3 3 2.625 2710 2.711 2717 3493 0374 0325 0.123 0.095 0.010 0.009 0.003
37 12 60 9 -3 0.894 0.863 0.863 0.863 2.730 0.749 0.859 0.857 0.024 0.007 0.007 0.007
50 04 60 6 0 2.804 2798 2.797 2.799 0.134 0.082 0.121 0.044 0.004 0.002 0.003 0.001
67 08 90 6 0 1.294 1289 1290 1.291 0.291 0.100 0.025 0.063 0.004 0.001 0.000 0.001
71 08 60 3 3 1368 1.437 1439 1425 3.697 1192 1364 0364 0.053 0.017 0.019 0.005
80 12 75 3 3 0866 0.889 0.888 0.891 2.697 0.097 0.186 0.072 0.024 0.001 0.002 0.001

4. Discussion

The descriptive parameters of surface roughness for the experimental tests performed are listed
in Table 8. The surface roughness ranges from 0.81 pm to 2.91 pm, with an average value of 1.64
um and a standard deviation of 0.795 pm. The lowest roughness value (Ra = Rami» = 0.81 um) was
obtained when machining with the largest values for the corner radius (r = rmax = 1.2 mm), the
largest approach angle (k = kmax = 90°), the largest rake angle (¥ = Ymax = 9°), and the smallest
inclination angle (A = Amin = -3°) of the turning insert. The highest roughness value (Ra = Ramax =
2.91 pm) was obtained when machining with the smallest values of corner radius (r = rmi» = 0.4
mm), the smallest approach angle (k = kmin = 60°), the smallest rake angle (y = Ymin = 3°) and the
largest inclination angle (A = Amax = 3°) of the turning insert. The ratio values show that the arith-
metical mean roughness changes in a wide range for suitable geometrical parameters, which en-
sures good process control. In other words, the desired quality of the machined surface can be
achieved by a suitable choice of input parameters.

The identified trends of the dependence of Ra on the input variables are consistent with some
previous studies. Feed rate and corner radius have the greatest effect on surface roughness. The
roughness of the machined surface decreases (improves) in the following cases: with increasing
corner radius [5, 11, 12, 16, 20, 21]; with an increase in positive values of the rake angle [8, 11, 18,
19]; with an increase in the approach angle [5, 8-10, 18], and with the reduction of inclination
angle [18], although to varying degrees with different combinations. The results are different, but
the trend is identical. Some of the studies also reported the opposite. Surface roughness can also
deteriorate (increase) under certain experimental conditions with increasing corner radius [9],
smaller approach angle [9, 19], with smaller rake angle [10], and with increasing positive values
of inclination angle [19]. Under certain machining conditions, roughness first increases and then
decreases with increasing inclination angle [8] and in some cases it first decreases and then in-
creases with increasing inclination angle [12].

Table 8 Descriptive parameters of the surface roughness Ra

Parameter Training Ra (um) Confirmation Ra (um)
Minimum value 0.810 0.848
Maximum value 2.910 2.804
Mean value 1.637 1.639
Standard deviation 0.795 0.834
Ratio 3.593 3.306

The reduction in roughness at a larger corner radius is a result of the lower and shallower peak
height and the lower and shallower valley depth of the machined surface. Higher values of ap-
proach angle and positive inclination angle result in lower susceptibility to vibration and thus
better quality of the machined surface. Increasing the rake angle improves the sharpness of the
cutting edge and thus reduces the roughness of the machined surface. When the approach angle
decreases, the contact length of the chip increases, the chip thickness decreases and the chip width
increases. The cutting forces are distributed over the longer cutting edge and chip breaking is
more difficult. Larger approach angles are characterized by an increase in resistance to auxiliary
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movements and a decrease in penetration resistance, as well as a lower tendency to vibration. In
the present study, increasing the approach angle resulted in a reduction in roughness, mainly due
to minimization of vibration. Reducing the cutting forces reduces the possibility of vibration and
thus improving the surface roughness. A negative value of the inclination angle directs chips in
the direction of workpiece (in the direction of auxiliary motion) and a positive value directs them
in the opposite direction (in the direction opposite to the direction of auxiliary motion). A negative
inclination angle increases the cutting edge strength, but also the back force of the cutting re-
sistance, which can lead to chattering. In the present study, negative values of the inclination angle
improved surface roughness by increasing cutting edge strength (and reducing the occurrence of
various wear mechanisms) and did not affect vibration induction. During turning, the tool tip is
exposed to high contact pressures and temperatures in the machining zone, which can increase
various wear mechanisms. The smaller corner radius is characterized by lower strength and the
larger one by higher strength. The poorest surface finish was obtained with the smallest corner
radius. This is due to the low strength of the tool tip and the resulting higher wear rate. The shorter
contact length between the tool tip and the workpiece results in less heat dissipation from the
shear zone and a higher concentration of heat and stress in this zone. This increases the possibility
of tool wear and even thermoplastic deformation of the tool tip.

The visual interpretation of the absolute and percentage errors for all experiments performed
(for the training dataset and the confirmation dataset) is shown in Fig. 5, and the minimum, max-
imum, and mean values for both datasets are shown in Table 9.

¢0TR MGPR-SE AGPR-Mat wRSM 40TR EGPR-SE AGPR-Mat wRSM
0.11 45
N
8:10:1 o ” 40 — =
0.09 - * *
g 35 ¢ —-
0.08 *
* ®
0.07 30
. +* d - ¢ ¢ i A $: * 9
e 0.06 o
5 ‘ ¢ ¢ 2 P PS
w ¢ ¢ w ® ¢
0.05 ~+ o L3 &
< 20 r L 4
** .« ® 4 7 e%
: & e ® v ® ¢ -
o *o *o = .é
o® o o0 10 ,. i «. £ 0 _
@
+ Ro .

R ﬁﬁm“fﬁ ’“’?%

54 63 72 81
Experiment number Experlment number

Fig. 5 Visual representation of absolute and percentage errors

Table 9 The percentage and absolute errors of the training and confirmation datasets

DTR GPR-SE GPR-Mat RSM

Experiment Value PE AE PE AE PE AE PE AE
(%) (m) (%) (nm) (%) (m) (%) (m)
Minimum 0.182 0.002 0.001 0.000 0.001 0.000 0.004 0.000
Training Maximum 3.898 0.106 0.628 0.006 0.543 0.006 0.960 0.011
Mean 1.491 0.025 0.168 0.002 0.137 0.002 0.241 0.003
Minimum 0.134 0.004 0.065 0.001 0.025 0.000 0.044 0.001
Confirmation Maximum 3.697 0.095 1.192 0.017 1.364 0.019 0.857 0.007
Mean 2.290 0.038 0.403 0.006 0.419 0.006 0.253 0.003

Based on Fig. 5 and Table 9, the following can be concluded:

e The DTR model had a PE of less than 1 % for 28 predictions, a PE of between 1% and 2 % for
28 predictions, a PE of between 2 % and 3 % for 18 predictions, and a PE of between 3 % and

Advances in Production Engineering & Management 17(3) 2022 377



Vukelic, Simunovic, Kanovic, Saric, Doroslovacki, Prica, Simunovic

4 % for 7 predictions. The absolute error for all predictions except one (AEmax = 0.106 pm)
was less than 0.1 pm. The maximum error values occur during training. The minimum and
mean error values also occur during training.

e The model GPR-SE had a PE of less than 1 % and an AE of less than 0.02 pm (AEmax = 0.017
um) for all predictions except one (PEmax = 1.192 %). The maximum error values occur at
confirmation. The minimum and mean error values occur during training.

e The GPR-Mat model had a PE of less than 1 % and an AE of less than 0.02 pm (AEmax = 0.019
um) for all predictions except one (PEmax = 1.364 %). The maximum error values occur at
confirmation. The minimum and mean error values occur during training.

e The RSM model had a PE of less than 1 % (PEmax = 0.960 %) and an AE of less than 0.02 um
(AEmax = 0.011 um) for all predictions. The maximum error values occur during training. The
minimum and average error values also occur during training.

The GPR-SE, GPR-Mat, and RSM models conditionally gave slightly better results, while the DTR
model gave slightly worse results. Moreover, the errors in the confirmation experiments are con-
sistent with those of PE during the training phase, indicating that the modelling was performed
correctly. The extremely low values of the maximum PE errors and, most importantly, the corre-
spondingly small values of AE (which give a real deviation from the desired value of the surface
roughness) show the real possibilities of practical application of all four models in practice.

5. Conclusion

In this study, the integral influence of four parameters of CVD coated cutting tool geometry (cor-
ner radius r, approach angle k, rake angle y and inclination angle A on surface roughness of C45
steel workpiece during finish turning was evaluated. Four models were developed based on the
experimental results. Confirmation experiments were conducted to validate the model.

The experimental results show that the surface roughness improves with a simultaneous in-
crease in corner radius r, approach angle k, and rake angle y, and a decrease in inclination angle A.
The corner radius r has a dominant effect on roughness, followed by the approach angle k with
less effect on surface roughness, the rake angle y even less and the inclination angle A with the
least.

Based on the experimental results, the modelling of the finish turning process was performed
using DTR, GPR-SE, GPR-Mat and RSM. The maximum percentage errors of the developed models
were 3.898 %, 1.192 %, 1.364 % and 0.960 % for DTR, GPR-SE, GPR-Mat and RSM, respectively.
In the worst case, the maximum absolute errors were 0.106 um, 0.017 pm, 0.019 um, and 0.011
um for DTR, GPR-SE, GPR-Mat, and RSM, respectively. The obtained errors are in the order of
tenths and hundredths of micrometers, and in most cases are many times smaller than the allow-
able processing tolerances in production. Based on the above, all four models can be considered
acceptable. Therefore, the developed models can be used in practice as an aid for engineers in
selecting the geometrical parameters of the cutting tool during the process planning in order to
obtain the required surface roughness.

Future research will focus on studying the influence of various cutting tool geometry factors
on surface roughness, inclusion and analysis of other output parameters, and multi-objective op-
timization of the finish turning process. In addition, future research will consider the other pa-
rameters that also affect surface roughness. The integration of a larger number of factors in the
model will increase the universality of its application and the accuracy, which is very important
in the finish turning, where the influence of all variables is particularly pronounced. One of the
future research directions will also be the modelling of surface roughness in finish turning as a
function of the geometry of the cutting tool using other methods, as well as the comparison of the
results obtained in order to choose the most suitable method for specific machining conditions.
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