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A B S T R A C T A R T I C L E   I N F O 
In this study, the modelling of arithmetical mean roughness after turning of C45 
steel was performed. Four parameters of cutting tool geometry were varied, 
i.e.: corner radius r, approach angle κ, rake angle γ and inclination angle λ. After 
turning, the arithmetical mean roughness Ra was measured. The obtained val-
ues of Ra ranged from 0.13 μm to 4.39 μm. The results of the experiments 
showed that surface roughness improves with increasing corner radius, in-
creasing approach angle, increasing rake angle, and decreasing inclination an-
gle. Based on the experimental results, models were developed to predict the 
distribution of the arithmetical mean roughness using the response surface 
method (RSM), Gaussian process regression with two kernel functions, the se-
quential exponential function (GPR-SE) and Mattern (GPR-Mat), and decision 
tree regression (DTR). The maximum percentage errors of the developed mod-
els were 3.898 %, 1.192 %, 1.364 %, and 0.960 % for DTR, GPR-SE, GPR-Mat, 
and RSM, respectively. In the worst case, the maximum absolute errors were 
0.106 μm, 0.017 μm, 0.019 μm, and 0.011 μm for DTR, GPR-SE, GPR-Mat, and 
RSM, respectively. The results and the obtained errors show that the developed 
models can be successfully used for surface roughness prediction. 
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1. Introduction
Turning plays an important role in machining. It can be achieved in several ways. The steps that 
need to be taken must be carefully defined to achieve the desired quality, lower cost and shorter 
production time. Roughness is an important quality indicator of the machining surface, as it affects 
the performance of the product, but also the production costs [1]. Numerous factors affect the 
quality of the machining surface: machining conditions (machine tool rigidity, vibrations, use of 
cutting fluid, type of cutting fluid, etc.), machining parameters (cutting speed, feed rate and depth 
of cut), material properties of the workpiece (chemical composition, mechanical properties, phys-
ical properties, thermal properties, etc.), and cutting tool parameters (geometry, material, coating, 
etc.) [2-4]. Cutting tool geometry has a great influence on dimensional accuracy, shape accuracy, 
tool wear, residual stress, chip shape, cutting force, heat distribution, hardness variation, vibra-
tion, and surface roughness. 
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Various methods have been proposed in the literature that have investigated the effects of tool 
geometry on surface roughness during turning. For example, Zerti et al. [5] studied the effects of 
corner radius, approach angle, and machining parameters on surface topography. Davoudinejad 
and Noordin [6] presented the effect of chamfer and honed edge geometry on surface finish. Zhao 
et al. [7] presented the effect of edge radius on surface roughness. Duc et al. [8] investigated the 
effect of cutting edge angle, rake angle, and inclination angle on surface roughness. Neseli et al. [9] 
investigated the influence of corner radius, approach angle and rake angle on surface roughness. 
Ashish and Lokesha [10] presented the effect of rake angle, approach angle, and process parame-
ters on surface roughness. Karim et al. [11] studied the effects of different rake angles on surface 
roughness. Kumar et al. [12] determined the effect of corner radius and approach angle, as well as 
turning parameters on the surface roughness. Cui et al. [13] performed an optimization of corner 
radius, rake angle and approach angle. Sung et al. [14] studied the effect of corner radius micro 
deviation on surface roughness. Ponugoti et al. [15] studied the surface roughness after turning 
with variable cutting speed, feed, depth of cut, corner radius and negative rake angle. Senthilku-
mar and Tamizharasan [16] analyzed the influence of insert shape, relief angle, and corner radius 
on surface roughness. Tauhiduzzaman and Veldhuis [17] investigated the role of tool geometry 
on roughness using a tool with a rounded primary cutting edge and a flat secondary cutting edge. 
Abainia and Ouelaa [18] studied the effect of rake angle, approach angle, and inclination angle on 
surface roughness. Mohammad et al. [19] studied the effects of approach angle, rake angle, and 
inclination angle on surface roughness. Hai et al. [20] studied the surface quality with different 
corner radii, cutting speeds, and feeds. Khellaf et al. [21] presented a comparison of surface rough-
ness with coated and uncoated mixed ceramics. Ozdemir [22] investigated the influence of turning 
parameters and corner radius on surface roughness. Kuntoglu et al. [23] investigated the influence 
of turning parameters and approach angle on surface roughness. In addition, some studies com-
pared the machined surface quality of conventional and wiper inserts after turning operations 
[24, 25]. The results showed that the wiper insert had better surface roughness performance com-
pared to conventional inserts. 

In analyzing the previous research in this field, which investigates the effects of tool geometry 
on surface roughness, experimental research dominates. The results obtained can only be applied 
to the conditions under which the experiments were conducted, and the associated cost and time 
cannot be neglected. To streamline this process, it is possible to model it. Response surface meth-
odology, Taguchi method, artificial neural networks and fuzzy logic are most commonly used to 
model the turning process [26-28]. Most of the previous research dealt with the effects of machin-
ing parameters (cutting speed, feed rate, depth of cut) on the output parameters of the process 
[29-32]. 

Soft computing methods were predominantly used for modelling the turning process. When 
the turning process is properly modelled and the errors in predicting surface roughness are 
within acceptable limits, the cost and time of experimental investigations are reduced and the 
subjective influence of the technologist on the results obtained is diminished. There is also greater 
universality and thus the possibility of practical application. The most important question is which 
method should be used and when, because each of them has advantages, but also disadvantages. 
Despite some existing guidelines, it is still not possible to define an algorithm for selecting an ap-
propriate method for specific production conditions. The error between the predicted and exper-
imental values must be within acceptable limits for the prediction model to be used in practice. 
Finally, the results of all surface roughness prediction methods should converge with increasing 
accuracy, leading to an integration that accounts for all possible variables. All prediction methods 
require significant resources to achieve the desired goals. Therefore, it is critical to select an ap-
propriate modelling method and formulate a sufficiently accurate model. 

In contrast to previous studies, the objective of this study is to evaluate the influence of four 
cutting tool geometry parameters, which have not been extensively studied in the literature, on 
surface roughness. The input parameters were the corner radius r, the approach angle κ, the rake 
angle γ and the inclination angle λ, while the output parameter was the arithmetical mean rough-
ness Ra. For the obtained results, the modelling of the finish turning was performed with DTR, 
GPR-SE and GPR-Mat, which were also not previously used for modelling the turning process. 
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2. Materials and methods 
The methodological framework used in the research is shown in Fig. 1. The experimental studies 
were carried out on a DMG Mori CTX 510 Ecoline CNC lathe. Dry external longitudinal turning was 
performed on a workpiece with dimensions Ø50 × 600 mm. The workpiece was fixed and clamped 
by means of the chuck and rotating centre. 

The tests were carried out on workpieces made of medium-carbon steel C45, whose chemical 
composition is 0.42-0.50 % C, 0.50-0.80 % Mn, ≤ 0.4 % Si, ≤ 0.045 % P, ≤ 0.045 % S, ≤ 0.4 % Cr, ≤ 
0.4 % Ni, ≤ 0.1 % Mo, and ≤ 0.63 % Cr+Mo+Ni. In addition, the mechanical and physical properties 
were as follows: density  7.87 g/cm3, hardness  163 HB, tensile strength 565 MPa, modulus of elas-
ticity 200 GPa, and Poisson's ratio 0.29. 

Turning parameters were set for all tests: cutting speed vc = 440 m/min, feed rate f = 0.10 
mm/rev, and depth of cut ap = 1.5 mm. The parameters were chosen in accordance with the rec-
ommendations of the manufacturers of the turning inserts. 

CVD-coated (TiCN+Al2O3+TiN) turning inserts were used for the experiments. All inserts had 
the same parameters: effective cutting edge length 10.34 mm, insert thickness 3.175 mm, in-
scribed circle diameter 6.35 mm, and clearance angle 7°. A new turning insert was used for each 
experiment. The geometrical parameters of the inserts varied during the experiments are listed 
in Table 1. 

The study was conducted in accordance with the randomized full factorial experiment, which 
allows the analysis of all combinations of input quantity levels. A total of 34 = 81 experiments were 
performed.  
 

 
Fig. 1 Methodological framework 

 
Table 1 Turning insert geometry levels (input variables) 

Input parameters Level 
Low Medium High 

Corner radius, r (mm) 0.4 0.8 1.2 
Approach angle, κ (°) 60 75 90 
Rake angle, γ (°) 3 6 9 
Inclination angle, λ (°) -3 0 3 

 

Table 2 Measurement conditions 
Parameter Value 
Sampling length 0.8 mm 
Cut-off wavelength 0.8 mm 
Evaluation length 4 mm 
Stylus tip diamond ball 
Stylus radius 2 μm 
Stylus force 1 mN 
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After each experiment, the surface roughness Ra was measured. The measurement was per-
formed using a Talysurf 6 measuring instrument, under the conditions listed in Table 2. The sur-
face roughness was measured at six evenly spaced locations along the cut length. The average 
value from these measurements was taken as the mean value of the surface roughness. 

After the experiments were conducted, process modelling was performed based on the ob-
tained results, i.e., prediction of surface roughness with: RSM, DTR, GPR-SE and GPR Mat. 

3. Results 
3.1 Results of experimental research 

The results of experimental research, i.e. the measured values of Ra for different combinations of 
input parameters, are presented in Table 3. 
 

Table 3 Results of experimental research 
Run 
ord. 

r 
(mm) 

κ 
(°) 

γ 
(°) 

λ 
(°) 

Ra 
(μm) 

Run 
ord. 

r 
(mm) 

κ 
(°) 

γ 
(°) 

λ 
(°) 

Ra 
(μm) 

Run 
ord. 

r 
(mm) 

κ 
(°) 

γ 
(°) 

λ 
(°) 

Ra 
(μm) 

1 0.8 60 3 -3 1.38 28 0.4 60 6 -3 2.76 55 0.4 60 3 0 2.86 
2 0.8 60 6 3 1.39 29 1.2 75 9 0 0.84 56 0.4 75 3 -3 2.74 
3 0.4 90 6 3 2.65 30 0.4 60 6 3 2.84 57 1.2 60 9 3 0.88 
4 0.4 90 6 -3 2.61 31 1.2 75 9 -3 0.84 58 1.2 75 3 0 0.88 
5 1.2 90 9 -3 0.81 32 1.2 90 6 0 0.84 59 0.4 60 6 0 2.80 
6 0.8 90 3 3 1.33 33 0.4 90 3 3 2.72 60 0.8 90 9 0 1.27 
7 1.2 75 6 0 0.86 34 0.4 90 6 0 2.63 61 0.8 75 9 0 1.30 
8 0.8 75 6 0 1.33 35 1.2 90 6 -3 0.83 62 1.2 90 6 3 0.84 
9 0.4 90 9 0 2.58 36 0.4 75 6 0 2.71 63 0.8 75 9 3 1.31 

10 0.4 60 3 3 2.91 37 1.2 60 9 -3 0.87 64 0.8 75 3 0 1.36 
11 0.4 90 9 3 2.60 38 0.8 60 9 -3 1.34 65 1.2 90 9 0 0.82 
12 0.4 75 9 -3 2.64 39 1.2 75 6 3 0.87 66 0.8 60 6 0 1.37 
13 1.2 75 9 3 0.85 40 1.2 90 3 0 0.86 67 0.8 90 6 0 1.29 
14 0.4 90 3 -3 2.68 41 0.8 90 9 -3 1.26 68 1.2 90 3 3 0.86 
15 1.2 60 3 0 0.91 42 1.2 60 6 -3 0.87 69 1.2 60 3 3 0.93 
16 1.2 60 6 3 0.91 43 1.2 75 3 -3 0.87 70 0.8 90 3 -3 1.31 
17 0.4 75 6 -3 2.69 44 0.8 60 6 -3 1.35 71 0.8 60 3 3 1.42 
18 0.8 75 9 -3 1.29 45 0.8 90 3 0 1.32 72 1.2 60 9 0 0.87 
19 0.8 90 6 -3 1.28 46 0.4 75 9 0 2.66 73 0.8 60 3 0 1.40 
20 1.2 90 3 -3 0.85 47 0.8 90 9 3 1.28 74 1.2 90 9 3 0.83 
21 0.4 75 3 0 2.77 48 0.8 75 3 3 1.37 75 1.2 60 6 0 0.89 
22 0.4 75 3 3 2.80 49 0.8 90 6 3 1.30 76 0.8 75 6 3 1.34 
23 0.4 60 9 0 2.75 50 0.4 90 3 0 2.69 77 0.4 60 9 3 2.78 
24 1.2 60 3 -3 0.89 51 0.4 75 9 3 2.68 78 0.4 60 3 -3 2.81 
25 0.8 60 9 0 1.35 52 0.8 75 6 -3 1.32 79 0.4 90 9 -3 2.56 
26 0.8 60 9 3 1.36 53 1.2 75 6 -3 0.85 80 1.2 75 3 3 0.89 
27 0.4 75 6 3 2.73 54 0.8 75 3 -3 1.35 81 0.4 60 9 -3 2.72 

3.2 Response surface method 

The experimental data (Table 3) were statistically processed using Design Expert software (ver-
sion DX8, 8.0.7.1) and a regression model was derived to predict the surface roughness. Fig. 2 
shows the response surface plots of surface roughness resulting from the regression model. Fig. 2 
shows that changing the approach angle κ, rake angle γ, and inclination angle λ does not signifi-
cantly change the surface roughness (Figs. 2a and 2c), while increasing the corner radius r signif-
icantly affects the reduction in surface roughness (Figs. 2b and 2d). 

Table 4 shows the ANOVA for the reduced quadratic regression model. The nonsignificant in-
teraction terms AD, BC, BD, CD, and the quadratic term A2 as well as the terms related to interac-
tions between the three factors and higher-order interactions have been removed. 

Below is the regression model in terms of the coded (Eq. 1) and the natural (actual) (Eq. 2) 
input variables. 
 

ln 𝑅𝑅𝑅𝑅 = 0.28 + 0.010 ∙ 𝐴𝐴 − 0.021 ∙ 𝐵𝐵 −  0.031 ∙ 𝐶𝐶 − 0.57 ∙ 𝐷𝐷 − 1.731 ∙ 10−3 ∙ 𝐴𝐴 ∙ 𝐵𝐵 − 3.286 ∙ 10−3 ∙
𝐴𝐴 ∙ 𝐶𝐶 + 2.03 ∙ 10−3 ∙ 𝐵𝐵2 + 2.395 ∙ 10−3 ∙ 𝐶𝐶2 + 0.14 ∙ 𝐷𝐷2  (1) 
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ln 𝑅𝑅𝑅𝑅 = 2.24998 + 0.010042 ∙ λ− 9.5811 ∙ 10−3 ∙ γ −  3.63354 ∙ 10−3 ∙ κ− 2.82799 ∙ 𝑟𝑟 − 1.92283 ∙
10−4 ∙ λ ∙ γ − 7.30217 ∙ 10−5 ∙ λ ∙ κ + 2.25531 ∙ 10−4 ∙ γ2 + 1.06423 ∙ 10−5 ∙ κ2 + 0.87167 ∙ 𝑟𝑟2  (2) 

 

 
Fig. 2 Response surface plots of surface roughness, a) with approach angle κ and corner radius r at the intermediate 
levels, b) with rake angle γ and approach angle κ at the intermediate levels, c) with rake angle γ and corner radius r at 
the intermediate levels, d) with inclination angle λ and rake angle γ at the intermediate levels 
 

Table 4 ANOVA for response surface reduced quadratic model 
Source Sum of Squares DF Mean Square F Value p-value, Prob > F 
Model 18.18 9 2.02 164684.3 < 0.0001 
A – inclination angle λ 0.005657 1 0.005657 461.19 < 0.0001 
B – rake angle γ 0.023 1 0.023 1872.60 < 0.0001 
C – approach angle κ 0.050 1 0.050 4110.92 < 0.0001 
D – corner radius r 17.75 1 17.75 1447116 < 0.0001 
AB 0.0001078 1 0.0001078 8.79 0.0041 
AC 0.0003887 1 0.0003887 31.69 < 0.0001 
B2 7.416 ⋅ 10-5 1 7.416 ⋅ 10-5 6.05 0.0164 
C2 0.0001032 1 0.0001032 8.41 0.0050 
D2 0.35 1 0.35 28543.75 < 0.0001 
Residual 0.0008709 71 1.227 ⋅ 10-5   
Cor Total 18.18 80    

 
Table 5 lists the regression coefficient for each model term, their standard errors, and 95 per-

cent confidence intervals (95 % CI). Confidence intervals are ranges within which the true regres-
sion coefficients must fall. In the table, these ranges are low for the intercept, the regression coef-
ficients of A, B, C, D, and D2, while they are high for AB, AC, B2, and C2. However, it is important that 
the regression coefficients do not span zero, because that would mean that a single regression 
coefficient can be zero, i.e., that a particular factor has no effect. 

Residual analysis follows as an important technique for analyzing regression models. Fig. 3 
shows the constructed normal probability plot of the internally studentized residuals to check the 
assumption of normality of the residuals or errors. From Fig. 3, it can be seen that the error dis-
tribution is approximately normal as the graph resembles the straight line. There are small devi-
ations from the straight line at the extremes, but this is not the case for most of the intermediate 
values. It is also clear that all internally studentized residuals are within ±3 standard deviations 
from zero (studentized residuals have unit variance), which means that there are no outliers. This 
is also evident from Fig. 4, which shows the plot of internally studentized residuals against four 
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factors. Fig. 4 also shows that for the factor D (corner radius r), there is some rule for the depend-
ence of the residuals on this factor, i.e. some pattern. Although both positive and negative inter-
nally studentized residuals occur (which is fine), there is still smaller scatter for the smaller corner 
radius and larger for the larger corner radius, which means that it is not a completely constant 
variance. This is mainly affected by only four internally studentized residuals, i.e., for the experi-
ments labelled 5 and 42 (Run ord.) in Table 3 (the internally studentized residuals are -2.59 and -
2.53, respectively) and for experiments 37 and 16 (the internally studentized residuals are 2.68 
and 2.95, respectively). These samples were rechecked and it was found that there were no pos-
sible errors in the measurement or recording of the results. 
 

Table 5 Standard errors and confidence intervals for regression coefficients 
Term Coefficient Estimate DF Standard Error 95 % CI Low 95 % CI High 

Intercept 0.28 1 1.030 ⋅ 10-3 0.281 0.285 
A – inclination angle (λ) 0.010 1 4.766 ⋅ 10-4 0.00928 0.011 
B – rake angle (γ) –0.021 1 4.766 ⋅ 10-4 –0.0216 –0.01967 
C – approach angle (κ) –0.031 1 4.766 ⋅ 10-4 –0.0315 –0.0296 
D – corner radius (r) –0.57 1 4.766 ⋅ 10-4 –0.574 –0.572 
AB –1.731 ⋅ 10-3 1 5.837 ⋅ 10-4 –2.89 ⋅ 10-3 –5.67 ⋅ 10-4 
AC –3.286 ⋅ 10-3 1 5.837 ⋅ 10-4 –4.45 ⋅ 10-3 –2.12 ⋅ 10-3 
B2 2.030 ⋅ 10-3 1 8.255 ⋅ 10-4 3.84 ⋅ 10-4 3.68 ⋅ 10-3 
C2 2.395 ⋅ 10-3 1 8.255 ⋅ 10-4 7.485 ⋅ 10-4 4.04 ⋅ 10-3 
D2 0.14 1 8.255 ⋅ 10-4 0.138 0.141 

 

 
Fig. 3 Normal probability plot of internally studentized residuals 

 
Fig. 4 Residuals versus factors, a) Residuals versus inclination angle λ, b) Residuals versus rake angle γ, 
c) Residuals versus approach angle κ, d) Residuals versus corner radius r 
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3.3 Decision tree regression 

A decision tree is a machine learning algorithm that can be used for both classification and regres-
sion. It is one of the most commonly used practical approaches for supervised learning [33]. In 
regression, the goal of a decision tree-based model is to predict a continuous output value for a 
given multivariate input data instance. The model is trained on the given training dataset 
{(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 ∈ 𝑅𝑅𝑚𝑚 × 𝑅𝑅, where 𝑥𝑥𝑖𝑖 is an m-dimensional input vector and 𝑦𝑦𝑖𝑖  is the corresponding out-
put value. Based on this dataset, a tree-structured regression model is built, as shown in Fig. 1, 
which consists of three types of nodes. The root node is the initial node which represents the 
whole dataset. It is split into additional nodes according to the decision (or division) rules con-
tained in both the root node and all subsequent nodes. The interior nodes represent the features 
of the dataset, and the branches represent the decision (i.e., division) rules. Finally, the leaf nodes 
represent terminal parts and provide the output results.  

The basic idea is to split the entire dataset into groups of "similar" samples, using decision rules 
contained in interior nodes, applied to input variables 𝑥𝑥𝑖𝑖 [34]. In the decision tree regression prob-
lems, the criterion for dataset splitting is the variance of the output value 𝑦𝑦𝑖𝑖: 
 

𝑣𝑣𝑣𝑣𝑣𝑣 = 1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
1=1   (3) 

 

where n is the total number of samples in the node and 𝑦𝑦 � is the mean of the output values of all 
samples in the node. Each "parent" node is divided into two "child" nodes. All possible ways of 
splitting the dataset in a given node are considered, and the one that provides the greatest vari-
ance reduction defined as follows: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) − ∑ 𝑤𝑤𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣(𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)2
𝑖𝑖=1   (4) 

 

is adopted. In the Eq. 4, 𝑤𝑤𝑖𝑖 is the ratio between the number of elements in the child node and the 
total number of elements in the parent node. In other words, we split the dataset each time into 
two new sets, each containing “similar” data, while at the same time the obtained sets differ as 
much as possible. The described process of node splitting is performed until the desired depth of 
the tree is reached, which depends on the complexity of the problem. 

Once the tree model is trained, it can be used to obtain the predicted value for each new data 
sample. Following the division rules for the input values xi, starting from the root node through all 
the interior nodes, the data sample can be grouped to one of the terminal nodes. The predicted 
value for that data sample is calculated as the average value of the output values yi of all the data 
samples from the training dataset that were grouped to that particular terminal node. 

In this study, the following turning process parameters were used as inputs 𝑥𝑥1 to 𝑥𝑥4: corner 
radius r, approach angle κ, rake angle γ, and inclination angle λ. The value of the surface roughness 
Ra was taken as the output parameter y. The tree model was built using Matlab and the application 
Regression learner, which has three variants for the tree depth according to the maximum number 
of splits: low, medium and fine tree. All variants were tested, and the fine tree variant, which al-
lows a maximum of 100 splits, was adopted based on the mean square error (MSE) value in the 5-
fold cross-validation training procedure. The minimum number of samples per node was set at 
five, which was determined by a trial-and-error procedure. The cross-validation procedure was 
also used to remove unnecessary branches to avoid overfitting. 

3.4 Gaussian process regression 

A Gaussian processes regression is a powerful machine learning technique that can be used to 
solve a wide variety of supervised learning problems, even when only a small amount of training 
data is available. It is a probability distribution over possible functions matching a set of points, 
given with the training dataset {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 ∈ 𝑅𝑅𝑚𝑚 × 𝑅𝑅, as described previously. The Gaussian pro-
cess regression is not given in the form of a function, but in a nonparametric form. Thus, instead 
of computing the probability distribution of the parameters of a specific function, GPR calculates 
the probability distribution over all admissible functions that fit the data in the dataset.  

The regression function modelled by Gaussian process regression has the following form: 
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𝑃𝑃(𝑓𝑓|𝑋𝑋) = 𝒩𝒩(𝑓𝑓|𝜇𝜇,𝐾𝐾) (5) 
where 𝑋𝑋 = [𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁], 𝑓𝑓 = [𝑓𝑓(𝑥𝑥1),𝑓𝑓(𝑥𝑥2), … ,𝑓𝑓(𝑥𝑥𝑁𝑁)], 𝜇𝜇 =  [𝑚𝑚(𝑥𝑥1),𝑚𝑚(𝑥𝑥2), … ,𝑚𝑚(𝑥𝑥𝑁𝑁)] and 𝐾𝐾𝑖𝑖𝑖𝑖 =
𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�. X are the observed input data, m represents the mean function, and K represents a posi-
tive definite kernel function, that defines the smoothness of the function, i.e., if the points 𝑥𝑥𝑖𝑖 and 
𝑥𝑥𝑗𝑗 are considered similar by the kernel, the function outputs of the two points, 𝑓𝑓(𝑥𝑥𝑖𝑖) and 𝑓𝑓�𝑥𝑥𝑗𝑗� are 
expected to be similar. Given the points of the training dataset and a mean function f estimated by 
these points, one can make predictions for each new dataset 𝑋𝑋∗ as 𝑓𝑓(𝑋𝑋∗) with a certain confidence 
interval depending on the values and distribution of the training dataset. The simple one-dimen-
sional GPR regression is shown in Fig. 1. Based on the training data (black dots), the mean function 
is determined (green line), and it gives predictions for all new data points 𝑋𝑋∗ with the confidence 
interval marked in grey. 

If we introduce 𝑓𝑓∗ as a prediction for a new dataset 𝑋𝑋∗, we can express the joint distribution of 
𝑓𝑓 and 𝑓𝑓∗ as follows: 
 

�
𝑓𝑓
𝑓𝑓∗
� ∼ 𝒩𝒩 ��𝑚𝑚

(𝑋𝑋)
𝑚𝑚(𝑋𝑋∗)� , �

𝐾𝐾 𝐾𝐾∗
𝐾𝐾∗𝑇𝑇 𝐾𝐾∗∗

�� (6) 
 

where 𝐾𝐾 = 𝐾𝐾(𝑋𝑋,𝑋𝑋), 𝐾𝐾∗ = 𝐾𝐾(𝑋𝑋,𝑋𝑋∗) and 𝐾𝐾∗∗ = 𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗). To be able to make a prediction, we need 
to derive the conditional distribution 𝑃𝑃(𝑓𝑓∗|𝑓𝑓,𝑋𝑋,𝑋𝑋∗) = 𝒩𝒩(𝑓𝑓|𝜇𝜇,𝐾𝐾). This derivation is given in detail 
in [35], obtaining: 
 

𝑓𝑓∗|𝑓𝑓,𝑋𝑋,𝑋𝑋∗ ∼ 𝒩𝒩(𝐾𝐾∗𝑇𝑇𝐾𝐾 𝑓𝑓,𝐾𝐾∗∗ −  𝐾𝐾∗𝑇𝑇𝐾𝐾−1𝐾𝐾∗) (7) 
 

In real applications, however, we do not need exact function values, but rather the noisy ver-
sion of the data, 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) + 𝜀𝜀, where we assume that 𝜀𝜀 is an additive independent and identically 
distributed (i.i.d.) Gaussian noise with a variance 𝜎𝜎𝑛𝑛2 that can be determined from the training da-
taset. The variance function then becomes cov(𝑦𝑦) = 𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼, and the joint distribution of the ob-
served points (training dataset) and the function values at new dataset points: 
 

�
𝑦𝑦
𝑓𝑓∗� ∼ 𝒩𝒩 ��𝑚𝑚

(𝑋𝑋)
𝑚𝑚(𝑋𝑋∗)� , �𝐾𝐾 + 𝜎𝜎𝑛𝑛2I 𝐾𝐾∗

𝐾𝐾∗𝑇𝑇 𝐾𝐾∗∗
�� (8) 

 

By deriving the conditional distribution, we get the predictive equations for Gaussian pro-
cesses regression as follows: 
 

𝑓𝑓∗̅|𝑦𝑦,𝑋𝑋,𝑋𝑋∗ ∼ 𝒩𝒩 �𝑓𝑓∗̅, cov(𝑓𝑓∗)� (9) 
 

𝑓𝑓∗̅ ≜ 𝔼𝔼�𝑓𝑓∗̅|𝑦𝑦,𝑋𝑋,𝑋𝑋∗� = 𝐾𝐾∗𝑇𝑇[𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼]−1𝑦𝑦            cov(𝑓𝑓∗) = 𝐾𝐾∗∗ − 𝐾𝐾∗𝑇𝑇[𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼]−1𝐾𝐾∗ (10) 
 

The practical implementation algorithm for Eqs. 8 to 10 is described in [35]. The best results 
were obtained with the quadratic exponential kernel (SE) and Matern kernel. The values of kernel 
parameters were optimized using marginal likelihood as the objective function [35]. 

3.5 The results of the prediction 

Of the total 81 experiments, 72 were used for training and 9 for confirmation. Table 6 shows the 
results of the training dataset, and Table 7 shows the modelling results of the confirmation da-
taset. The strength of the modelling, i.e., the deviation between the measured Ra value (Raimv) and 
the predicted Ra value (Raipv), was estimated by the absolute error (AE) and the percentage error 
(PE) as follows: 
 

𝐴𝐴𝐴𝐴 = �𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖� (11) 
 

𝑃𝑃𝑃𝑃 =
�𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖�

𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖
∙ 100 % (12) 
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Table 6 Modelling results of the training dataset 
Ru
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1 0.8 60 3 -3 1.368 1.378 1.380 1.382 0.906 0.139 0.025 0.170 0.013 0.002 0.000 0.002 
2 0.8 60 6 3 1.368 1.396 1.395 1.391 1.619 0.464 0.391 0.060 0.023 0.006 0.005 0.001 
3 0.4 90 6 3 2.625 2.650 2.650 2.651 0.943 0.001 0.004 0.046 0.025 0.000 0.000 0.001 
4 0.4 90 6 -3 2.625 2.612 2.613 2.615 0.575 0.077 0.110 0.177 0.015 0.002 0.003 0.005 
5 1.2 90 9 -3 0.832 0.812 0.813 0.817 2.675 0.191 0.318 0.835 0.022 0.002 0.003 0.007 
6 0.8 90 3 3 1.294 1.328 1.329 1.332 2.726 0.149 0.084 0.142 0.036 0.002 0.001 0.002 
7 1.2 75 6 0 0.866 0.859 0.860 0.860 0.698 0.072 0.047 0.039 0.006 0.001 0.000 0.000 
8 0.8 75 6 0 1.335 1.327 1.328 1.328 0.376 0.263 0.185 0.175 0.005 0.003 0.002 0.002 
9 0.4 90 9 0 2.625 2.581 2.581 2.584 1.744 0.043 0.049 0.168 0.045 0.001 0.001 0.004 

10 0.4 60 3 3 2.804 2.906 2.908 2.907 3.651 0.135 0.061 0.107 0.106 0.004 0.002 0.003 
11 0.4 90 9 3 2.625 2.600 2.601 2.598 0.962 0.017 0.039 0.082 0.025 0.000 0.001 0.002 
13 1.2 75 9 3 0.832 0.848 0.849 0.852 2.157 0.191 0.120 0.200 0.018 0.002 0.001 0.002 
14 0.4 90 3 -3 2.625 2.674 2.675 2.670 2.052 0.224 0.180 0.377 0.055 0.006 0.005 0.010 
15 1.2 60 3 0 0.894 0.909 0.908 0.910 1.786 0.117 0.171 0.052 0.016 0.001 0.002 0.000 
16 1.2 60 6 3 0.894 0.904 0.905 0.901 1.786 0.628 0.543 0.960 0.016 0.006 0.005 0.009 
17 0.4 75 6 -3 2.723 2.686 2.687 2.680 1.208 0.139 0.103 0.354 0.033 0.004 0.003 0.010 
19 0.8 90 6 -3 1.294 1.281 1.281 1.282 1.074 0.070 0.047 0.146 0.014 0.001 0.001 0.002 
20 1.2 90 3 -3 0.848 0.851 0.851 0.848 0.235 0.116 0.062 0.210 0.002 0.001 0.001 0.002 
21 0.4 75 3 0 2.723 2.771 2.769 2.770 1.715 0.023 0.024 0.004 0.047 0.001 0.001 0.000 
22 0.4 75 3 3 2.723 2.799 2.799 2.803 2.768 0.025 0.027 0.123 0.077 0.001 0.001 0.003 
23 0.4 60 9 0 2.804 2.748 2.749 2.747 1.955 0.064 0.043 0.101 0.054 0.002 0.001 0.003 
24 1.2 60 3 -3 0.894 0.888 0.889 0.896 0.421 0.229 0.168 0.648 0.004 0.002 0.001 0.006 
25 0.8 60 9 0 1.368 1.349 1.348 1.347 1.296 0.105 0.117 0.231 0.017 0.001 0.002 0.003 
26 0.8 60 9 3 1.368 1.364 1.363 1.363 0.551 0.286 0.230 0.210 0.007 0.004 0.003 0.003 
27 0.4 75 6 3 2.723 2.735 2.733 2.736 0.275 0.181 0.117 0.217 0.007 0.005 0.003 0.006 
28 0.4 60 6 -3 2.804 2.760 2.760 2.761 1.585 0.015 0.008 0.043 0.044 0.000 0.000 0.001 
29 1.2 75 9 0 0.832 0.843 0.843 0.844 0.992 0.364 0.307 0.534 0.008 0.003 0.003 0.004 
30 0.4 60 6 3 2.804 2.837 2.837 2.837 1.276 0.091 0.111 0.110 0.036 0.003 0.003 0.003 
31 1.2 75 9 -3 0.832 0.839 0.838 0.837 0.992 0.144 0.215 0.317 0.008 0.001 0.002 0.003 
34 0.4 90 6 0 2.625 2.631 2.631 2.633 0.190 0.032 0.028 0.108 0.005 0.001 0.001 0.003 
35 1.2 90 6 -3 0.848 0.828 0.829 0.831 2.169 0.220 0.102 0.078 0.018 0.002 0.001 0.001 
36 0.4 75 6 0 2.723 2.710 2.709 2.708 0.461 0.001 0.021 0.072 0.013 0.000 0.001 0.002 
38 0.8 60 9 -3 1.368 1.338 1.338 1.331 2.052 0.180 0.139 0.665 0.027 0.002 0.002 0.009 
39 1.2 75 6 3 0.866 0.867 0.868 0.869 0.460 0.327 0.214 0.093 0.004 0.003 0.002 0.001 
40 1.2 90 3 0 0.848 0.856 0.857 0.856 1.395 0.450 0.300 0.511 0.012 0.004 0.003 0.004 
41 0.8 90 9 -3 1.294 1.257 1.256 1.260 2.679 0.223 0.349 0.034 0.034 0.003 0.004 0.000 
42 1.2 60 6 -3 0.894 0.873 0.871 0.877 2.730 0.313 0.160 0.830 0.024 0.003 0.001 0.007 
43 1.2 75 3 -3 0.866 0.871 0.870 0.870 0.460 0.122 0.024 0.048 0.004 0.001 0.000 0.000 
44 0.8 60 6 -3 1.368 1.353 1.353 1.354 1.296 0.188 0.203 0.276 0.017 0.003 0.003 0.004 
45 0.8 90 3 0 1.294 1.321 1.321 1.320 1.989 0.086 0.073 0.029 0.026 0.001 0.001 0.000 
46 0.4 75 9 0 2.723 2.660 2.660 2.658 2.350 0.004 0.007 0.069 0.063 0.000 0.000 0.002 
47 0.8 90 9 3 1.294 1.276 1.276 1.274 1.074 0.318 0.306 0.496 0.014 0.004 0.004 0.006 
48 0.8 75 3 3 1.335 1.374 1.374 1.374 2.555 0.278 0.283 0.325 0.035 0.004 0.004 0.004 
49 0.8 90 6 3 1.294 1.298 1.299 1.300 0.481 0.172 0.103 0.015 0.006 0.002 0.001 0.000 
50 0.4 90 3 0 2.625 2.692 2.692 2.693 2.416 0.067 0.062 0.118 0.065 0.002 0.002 0.003 
51 0.4 75 9 3 2.723 2.680 2.680 2.681 1.586 0.009 0.007 0.032 0.043 0.000 0.000 0.001 
52 0.8 75 6 -3 1.335 1.317 1.318 1.314 1.136 0.240 0.128 0.443 0.015 0.003 0.002 0.006 
53 1.2 75 6 -3 0.866 0.852 0.852 0.852 1.882 0.240 0.181 0.185 0.016 0.002 0.002 0.002 
54 0.8 75 3 -3 1.335 1.347 1.347 1.342 1.111 0.229 0.206 0.597 0.015 0.003 0.003 0.008 
55 0.4 60 3 0 2.804 2.858 2.857 2.863 1.967 0.079 0.101 0.101 0.056 0.002 0.003 0.003 
56 0.4 75 3 -3 2.723 2.743 2.743 2.737 0.639 0.109 0.093 0.104 0.018 0.003 0.003 0.003 
57 1.2 60 9 3 0.894 0.880 0.881 0.883 1.562 0.009 0.089 0.356 0.014 0.000 0.001 0.003 
58 1.2 75 3 0 0.866 0.880 0.880 0.880 1.591 0.012 0.001 0.005 0.014 0.000 0.000 0.000 
60 0.8 90 9 0 1.294 1.266 1.267 1.267 1.870 0.344 0.268 0.234 0.024 0.004 0.003 0.003 
61 0.8 75 9 0 1.335 1.303 1.303 1.303 2.692 0.202 0.232 0.248 0.035 0.003 0.003 0.003 
62 1.2 90 6 3 0.848 0.844 0.843 0.842 0.952 0.520 0.394 0.271 0.008 0.004 0.003 0.002 
63 0.8 75 9 3 1.335 1.311 1.311 1.314 1.908 0.068 0.058 0.332 0.025 0.001 0.001 0.004 
64 0.8 75 3 0 1.335 1.359 1.359 1.358 1.838 0.054 0.078 0.140 0.025 0.001 0.001 0.002 
65 1.2 90 9 0 0.832 0.822 0.822 0.821 1.423 0.203 0.224 0.126 0.012 0.002 0.002 0.001 
66 0.8 60 6 0 1.368 1.373 1.371 1.372 0.182 0.192 0.098 0.157 0.003 0.003 0.001 0.002 
68 1.2 90 3 3 0.848 0.861 0.860 0.863 1.395 0.074 0.021 0.357 0.012 0.001 0.000 0.003 
69 1.2 60 3 3 0.894 0.932 0.931 0.924 3.898 0.210 0.130 0.698 0.036 0.002 0.001 0.006 
70 0.8 90 3 -3 1.294 1.315 1.313 1.309 1.240 0.417 0.255 0.078 0.016 0.005 0.003 0.001 
72 1.2 60 9 0 0.894 0.870 0.870 0.873 2.730 0.043 0.015 0.319 0.024 0.000 0.000 0.003 
73 0.8 60 3 0 1.368 1.406 1.406 1.404 2.321 0.403 0.399 0.257 0.033 0.006 0.006 0.004 
74 1.2 90 9 3 0.832 0.832 0.830 0.825 0.201 0.215 0.012 0.563 0.002 0.002 0.000 0.005 
75 1.2 60 6 0 0.894 0.887 0.887 0.889 0.421 0.283 0.284 0.095 0.004 0.003 0.003 0.001 
76 0.8 75 6 3 1.335 1.338 1.338 1.341 0.373 0.120 0.134 0.100 0.005 0.002 0.002 0.001 
77 0.4 60 9 3 2.804 2.778 2.779 2.780 0.854 0.063 0.037 0.007 0.024 0.002 0.001 0.000 
78 0.4 60 3 -3 2.804 2.812 2.811 2.820 0.222 0.063 0.047 0.341 0.006 0.002 0.001 0.010 
79 0.4 90 9 -3 2.625 2.563 2.562 2.571 2.539 0.108 0.074 0.425 0.065 0.003 0.002 0.011 
81 0.4 60 9 -3 2.804 2.721 2.721 2.715 3.079 0.047 0.041 0.183 0.084 0.001 0.001 0.005 
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Table 7 Modelling results of the confirmation dataset 
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12 0.4 75 9 -3 2.723 2.642 2.642 2.636 3.125 0.065 0.065 0.165 0.083 0.002 0.002 0.004 
18 0.8 75 9 -3 1.335 1.297 1.298 1.292 3.488 0.557 0.581 0.169 0.045 0.007 0.008 0.002 
32 1.2 90 6 0 0.848 0.837 0.838 0.836 0.952 0.407 0.244 0.423 0.008 0.003 0.002 0.004 
33 0.4 90 3 3 2.625 2.710 2.711 2.717 3.493 0.374 0.325 0.123 0.095 0.010 0.009 0.003 
37 1.2 60 9 -3 0.894 0.863 0.863 0.863 2.730 0.749 0.859 0.857 0.024 0.007 0.007 0.007 
59 0.4 60 6 0 2.804 2.798 2.797 2.799 0.134 0.082 0.121 0.044 0.004 0.002 0.003 0.001 
67 0.8 90 6 0 1.294 1.289 1.290 1.291 0.291 0.100 0.025 0.063 0.004 0.001 0.000 0.001 
71 0.8 60 3 3 1.368 1.437 1.439 1.425 3.697 1.192 1.364 0.364 0.053 0.017 0.019 0.005 
80 1.2 75 3 3 0.866 0.889 0.888 0.891 2.697 0.097 0.186 0.072 0.024 0.001 0.002 0.001 

4. Discussion 
The descriptive parameters of surface roughness for the experimental tests performed are listed 
in Table 8. The surface roughness ranges from 0.81 μm to 2.91 μm, with an average value of 1.64 
μm and a standard deviation of 0.795 μm. The lowest roughness value (Ra = Ramin = 0.81 μm) was 
obtained when machining with the largest values for the corner radius (r = rmax = 1.2 mm), the 
largest approach angle (κ = κmax = 90°), the largest rake angle (γ = γmax = 9°), and the smallest 
inclination angle (λ = λmin = -3°) of the turning insert. The highest roughness value (Ra = Ramax = 
2.91 μm) was obtained when machining with the smallest values of corner radius (r = rmin = 0.4 
mm), the smallest approach angle (κ = κmin = 60°), the smallest rake angle (γ = γmin = 3°) and the 
largest inclination angle (λ = λmax = 3°) of the turning insert. The ratio values show that the arith-
metical mean roughness changes in a wide range for suitable geometrical parameters, which en-
sures good process control. In other words, the desired quality of the machined surface can be 
achieved by a suitable choice of input parameters. 

The identified trends of the dependence of Ra on the input variables are consistent with some 
previous studies. Feed rate and corner radius have the greatest effect on surface roughness. The 
roughness of the machined surface decreases (improves) in the following cases: with increasing 
corner radius [5, 11, 12, 16, 20, 21]; with an increase in positive values of the rake angle [8, 11, 18, 
19]; with an increase in the approach angle [5, 8-10, 18], and with the reduction of inclination 
angle [18], although to varying degrees with different combinations. The results are different, but 
the trend is identical. Some of the studies also reported the opposite. Surface roughness can also 
deteriorate (increase) under certain experimental conditions with increasing corner radius [9], 
smaller approach angle [9, 19], with smaller rake angle [10], and with increasing positive values 
of inclination angle [19]. Under certain machining conditions, roughness first increases and then 
decreases with increasing inclination angle [8] and in some cases it first decreases and then in-
creases with increasing inclination angle [12]. 
 

Table 8 Descriptive parameters of the surface roughness Ra 
Parameter Training Ra (μm) Confirmation Ra (μm) 

Minimum value 0.810 0.848 
Maximum value 2.910 2.804 
Mean value 1.637 1.639 
Standard deviation 0.795 0.834 
Ratio 3.593 3.306 

 
The reduction in roughness at a larger corner radius is a result of the lower and shallower peak 

height and the lower and shallower valley depth of the machined surface. Higher values of ap-
proach angle and positive inclination angle result in lower susceptibility to vibration and thus 
better quality of the machined surface. Increasing the rake angle improves the sharpness of the 
cutting edge and thus reduces the roughness of the machined surface. When the approach angle 
decreases, the contact length of the chip increases, the chip thickness decreases and the chip width 
increases. The cutting forces are distributed over the longer cutting edge and chip breaking is 
more difficult. Larger approach angles are characterized by an increase in resistance to auxiliary 
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movements and a decrease in penetration resistance, as well as a lower tendency to vibration. In 
the present study, increasing the approach angle resulted in a reduction in roughness, mainly due 
to minimization of vibration. Reducing the cutting forces reduces the possibility of vibration and 
thus improving the surface roughness. A negative value of the inclination angle directs chips in 
the direction of workpiece (in the direction of auxiliary motion) and a positive value directs them 
in the opposite direction (in the direction opposite to the direction of auxiliary motion). A negative 
inclination angle increases the cutting edge strength, but also the back force of the cutting re-
sistance, which can lead to chattering. In the present study, negative values of the inclination angle 
improved surface roughness by increasing cutting edge strength (and reducing the occurrence of 
various wear mechanisms) and did not affect vibration induction. During turning, the tool tip is 
exposed to high contact pressures and temperatures in the machining zone, which can increase 
various wear mechanisms. The smaller corner radius is characterized by lower strength and the 
larger one by higher strength. The poorest surface finish was obtained with the smallest corner 
radius. This is due to the low strength of the tool tip and the resulting higher wear rate. The shorter 
contact length between the tool tip and the workpiece results in less heat dissipation from the 
shear zone and a higher concentration of heat and stress in this zone. This increases the possibility 
of tool wear and even thermoplastic deformation of the tool tip. 

The visual interpretation of the absolute and percentage errors for all experiments performed 
(for the training dataset and the confirmation dataset) is shown in Fig. 5, and the minimum, max-
imum, and mean values for both datasets are shown in Table 9. 
 

 
Fig. 5 Visual representation of absolute and percentage errors 

 
Table 9 The percentage and absolute errors of the training and confirmation datasets 

Experiment Value 
DTR GPR-SE GPR-Mat RSM 

PE 
(%) 

AE 
(μm) 

PE 
(%) 

AE 
(μm) 

PE 
(%) 

AE 
(μm) 

PE 
(%) 

AE 
(μm) 

Training 
Minimum 0.182 0.002 0.001 0.000 0.001 0.000 0.004 0.000 
Maximum 3.898 0.106 0.628 0.006 0.543 0.006 0.960 0.011 

Mean 1.491 0.025 0.168 0.002 0.137 0.002 0.241 0.003 

Confirmation 
Minimum 0.134 0.004 0.065 0.001 0.025 0.000 0.044 0.001 
Maximum 3.697 0.095 1.192 0.017 1.364 0.019 0.857 0.007 

Mean 2.290 0.038 0.403 0.006 0.419 0.006 0.253 0.003 
 

Based on Fig. 5 and Table 9, the following can be concluded: 

• The DTR model had a PE of less than 1 % for 28 predictions, a PE of between 1% and 2 % for 
28 predictions, a PE of between 2 % and 3 % for 18 predictions, and a PE of between 3 % and 
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4 % for 7 predictions. The absolute error for all predictions except one (AEmax = 0.106 μm) 
was less than 0.1 μm. The maximum error values occur during training. The minimum and 
mean error values also occur during training. 

• The model GPR-SE had a PE of less than 1 % and an AE of less than 0.02 μm (AEmax = 0.017 
μm) for all predictions except one (PEmax = 1.192 %). The maximum error values occur at 
confirmation. The minimum and mean error values occur during training. 

• The GPR-Mat model had a PE of less than 1 % and an AE of less than 0.02 μm (AEmax = 0.019 
μm) for all predictions except one (PEmax = 1.364 %). The maximum error values occur at 
confirmation. The minimum and mean error values occur during training. 

• The RSM model had a PE of less than 1 % (PEmax = 0.960 %) and an AE of less than 0.02 μm 
(AEmax = 0.011 μm) for all predictions. The maximum error values occur during training. The 
minimum and average error values also occur during training. 

 
The GPR-SE, GPR-Mat, and RSM models conditionally gave slightly better results, while the DTR 

model gave slightly worse results. Moreover, the errors in the confirmation experiments are con-
sistent with those of PE during the training phase, indicating that the modelling was performed 
correctly. The extremely low values of the maximum PE errors and, most importantly, the corre-
spondingly small values of AE (which give a real deviation from the desired value of the surface 
roughness) show the real possibilities of practical application of all four models in practice. 

5. Conclusion 
In this study, the integral influence of four parameters of CVD coated cutting tool geometry (cor-
ner radius r, approach angle κ, rake angle γ and inclination angle λ on surface roughness of C45 
steel workpiece during finish turning was evaluated. Four models were developed based on the 
experimental results. Confirmation experiments were conducted to validate the model. 

The experimental results show that the surface roughness improves with a simultaneous in-
crease in corner radius r, approach angle κ, and rake angle γ, and a decrease in inclination angle λ. 
The corner radius r has a dominant effect on roughness, followed by the approach angle κ with 
less effect on surface roughness, the rake angle γ even less and the inclination angle λ with the 
least. 

Based on the experimental results, the modelling of the finish turning process was performed 
using DTR, GPR-SE, GPR-Mat and RSM. The maximum percentage errors of the developed models 
were 3.898 %, 1.192 %, 1.364 % and 0.960 % for DTR, GPR-SE, GPR-Mat and RSM, respectively. 
In the worst case, the maximum absolute errors were 0.106 μm, 0.017 μm, 0.019 μm, and 0.011 
μm for DTR, GPR-SE, GPR-Mat, and RSM, respectively. The obtained errors are in the order of 
tenths and hundredths of micrometers, and in most cases are many times smaller than the allow-
able processing tolerances in production. Based on the above, all four models can be considered 
acceptable. Therefore, the developed models can be used in practice as an aid for engineers in 
selecting the geometrical parameters of the cutting tool during the process planning in order to 
obtain the required surface roughness. 

Future research will focus on studying the influence of various cutting tool geometry factors 
on surface roughness, inclusion and analysis of other output parameters, and multi-objective op-
timization of the finish turning process. In addition, future research will consider the other pa-
rameters that also affect surface roughness. The integration of a larger number of factors in the 
model will increase the universality of its application and the accuracy, which is very important 
in the finish turning, where the influence of all variables is particularly pronounced. One of the 
future research directions will also be the modelling of surface roughness in finish turning as a 
function of the geometry of the cutting tool using other methods, as well as the comparison of the 
results obtained in order to choose the most suitable method for specific machining conditions. 
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