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A B S T R A C T A R T I C L E   I N F O 
In this paper, a global simulation optimization approach is developed to imi-
tate and optimize the performance of the Pharmaceutical Supply Chain (PSC). 
Firstly, a hierarchical hybrid simulation model is developed in which aggre-
gate and detailed data levels are addressed simultaneously. The model con-
sists of two types of interdependent paradigms: the system dynamics para-
digm, which depicts the echelons of pharmacies and wholesalers in the PSC, 
and the discrete event paradigm, which simulates the manufacturers with 
their detailed production operations, as well as the echelons of suppliers. 
Secondly, the "As is" scenario analysis and a screening process are performed 
to extract significant input parameters as well as sensitive outputs of the 
model. The final step optimizes the performance of PSC. The proposed ap-
proach validity is appraised by being applied to the PSC of a leading pharma-
ceutical company in Jordan. As a result, the opportunity loss cost has consid-
erably decreased for both the manufacturer and wholesalers’ echelons and 
the service level has improved throughout the PSC.  
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1. Introduction
Pharmaceutical supply chain (PSC) is a very complicated supply chain due to heterogeneous 
stakeholders, internal and external environments, and distinct related characteristics of 
healthcare industry such as pharmaceuticals, medical equipment, and patients’ flow. PSC is also 
very sensitive, as it must guarantee that the right drug reaches the right people at the right time 
and in the right condition. Typically, PSC network consists of multi echelons including pharma-
cies, drugs wholesalers, drugs manufacturers, and raw material (RM) suppliers. Yet, PSC net-
works are continuously evolving with increasing number of customers, different types of prod-
ucts, increasing number of suppliers and manufacturers. Over the past decades, PSC has faced 
tremendous challenges such as lack of coordination, shortage or excess of drugs, and high de-
mand uncertainty [1, 2]. Shortage of drugs is not a simple incident that can be diagnosed by one 
or more explicit sources; rather, it is a dynamic crisis caused by multiple interrelated aspects. 
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Low manufacturing velocities, multi-procedures of quality assurance, and supply chain dynam-
ics are the key players in PSC drug shortage [3]. 

Optimizing the PSC can be carried out analytically [4] or heuristically [5]. However, these ap-
proaches are generally applied under simplification assumptions such as sole stage or product 
and restricted variability [6]. In real situations, PSC is a complex system with multi-product and 
multi-echelon. It operates under a high level of stochasticity in which analytical optimization 
may fail. Additionally, similar to other SC, PSC includes manufacturing and non-manufacturing 
functions, encompasses different planning scopes at various management levels, and involves 
dissimilar data details [7]. In such turbulent circumstances, simulation would be the optimal 
approach that gives practitioners the ability to imitate such complex systems using different 
scenarios without altering processes on ground [8]. 

Mostly, single simulation methodology, including discrete-event (DE) [9, 10] or system dy-
namics (SD) [11, 12] is adopted in literature for PSC simulation modelling. However, considering 
the combination of discrete and continuous issues within the PSC, as well as the challenges re-
lated to different abstraction levels, relying solely on an individual simulation approach proves 
inadequate in accurately capturing the PSC system [13]. Lately, hybrid simulation, where two or 
more traditional simulation modelling paradigms are integrated into one model, has proved 
excellent capabilities in resolving complicated scenarios such as PSC [7, 13]. According to Eldabi 
et al. [14], interest in hybrid simulation has experienced remarkable growth in the last decade. 
With its evolving complications, Brailsford et al. [15] highlighted the need to explore the applica-
tion of hybrid simulation in the modern operation management area.  

Simulation optimization (SO) can be defined as the process of testing various variables’ val-
ues in order to find the most desirable combination of values from simulation models [16]. The 
valuable advantage of SO is the ability to handle stochasticity and complex interactions at a level 
that can hardly be formulated by traditional optimization [17]. The early initiatives to embed 
optimization in simulation modelling were either non-generic and based on ad hoc approaches 
or were heavily dependent on users to implement "seat of the pants" analysis [17]. Later, intelli-
gent search procedures have been implemented within SO to find optimal or near-optimal solu-
tions by exploring a small portion of available alternatives [18]. For PSC literature, SO is rarely 
adopted, mostly, the PSC entities are considered as disjoint systems to be locally controlled and 
optimized. Chen et al. [19] proposed a DE-SO approach for the clinical SC that included patient 
demand, demand scenario forecast, and mathematical programming-based planning. Franco and 
Alfonso-Lizarazo (20) developed a SO approach based on the sample path method for optimizing 
tactical and operational decision levels in PSC. They considered uncertainty in demand, cost, and 
lead-time in the pharmacy-hospital echelon. 
 This study develops a global SO approach to optimize the PSC performance at different data 
levels using hierarchical hybrid (HH) simulation modelling. The developed HH simulation model 
can holistically imitate multi-echelon multi-product PSC. In this model, both aggregate, such as 
material and information flow between the PSC entities, and detailed data levels, including pro-
duction process details are taken into consideration. Particularly, the proposed model allows for 
the integration of different sub-models with different data levels into an overall global SO model, 
hence, avoiding inconsistencies resulted from combining models with different data levels [21, 
22]. Moreover, the proposed HH simulation model handles the dynamic nature of stochastic 
market demand on daily basis, at the same time, it can simulate the discrete detailed processes 
occurring in real PSC (e.g., replenishment and production processes). 

2. The hierarchical hybrid simulation optimization (HH-SO) approach 
The proposed SO approach consists of three main steps. First, a HH simulation model is devel-
oped to simultaneously address aggregate and detailed data levels in the PSC. Then, the "As is" 
scenario analysis is performed, and a screening process is applied via sensitivity analysis in or-
der to extract major effective parameters as well as sensitive outputs. The performance of PSC 
concerning sensitive outputs is optimized in the third step. Fig. 1 depicts the major steps in the 
proposed approach while the next subsections further discuss them. 
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Fig. 1 The proposed approach flowchart 

2.1 The hierarchical hybrid (HH) simulation modelling 
Fig. 1 depicts the hybridity in the proposed simulation model while the hierarchy in the simula-
tion model is described in Fig. 2. The HH simulation model consists of two types of interrelated 
paradigms: SD paradigm that depicts the pharmacies and wholesalers’ echelons in the PSC, and 
DE paradigm that simulates the manufacturers with their detailed production operations, order 
receiving, order fulfilment, inventory management, replenishment, and storage processes, and 
the suppliers' echelons. SD is used to depict the dynamic and stochastic nature of market de-
mand due to its capabilities in buffering and self-adaptation to turbulence in market demand, 
which is considered a frequent situation in PSCs. On the other hand, DE is adopted to emulate 
discrete physical and business processes such as production, order fulfilment, and inventory 
management. It is worthy to recap how critical inventory management is for effective PSC due to 
its enormous effect on both cost-related and service-related KPIs [23]. However, multi-echelon 
inventory management is strongly dependent on the performance of drugs suppliers and distri-
bution centres [24]. Consequently, optimizing the PSC operations while considering inventory 
levels would be beneficial to achieve higher profit margins as well as higher service levels [25]. 

 
Fig. 2 The proposed hierarchical simulation model 
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Model building, verification, and validation  

All PSC processes are simulated by either SD or DE sub models. Each sub model is verified and 
debugged separately. In addition, control variables are used to test and verify sub models' logic 
and outputs. Then, the sub models are combined and aggregated gradually until the global HH 
simulation model is completely developed and verified. Regarding model validation, the pro-
posed model/approach is validated by being used to simulate the PSC performance of a leading 
pharmaceutical company in Jordan. Major model outputs are compared to actual values obtained 
from the model’s implementation. The results are comparable with an acceptable level of accu-
racy. Hence, the model is considered to be validated. More details about this step are presented 
in Section 3. 

Model inputs, outputs, and assessment 

The model input parameters are classified into three categories, as illustrated in Table 1, input 
parameters for SD sub models, input parameters for DE sub models, and input parameters for 
both paradigms. The third type of inputs is called interaction points since they affect and con-
nect the SD and DE paradigms concurrently. The inputs include the number of entities, number 
of materials (both raw and finished), market demand, variables related to the inventory man-
agement system at different echelons, and production process variables. Table 2 shows the 
model outputs, which include different cost items, service level, lost orders, and different profit 
measures for different echelons.  

Two distinct types of KPIs for both the wholesalers and manufacturers’ echelons assess the 
model: the cost-related KPIs is represented in the opportunity loss cost while the service-related 
KPIs is expressed in the service level. Both measures are essential not only because they are high-
ly related to the drugs’ shortage critical challenge in PSC, but also due to their direct influence on 
the market share and competencies of PSC entities. In the developed model, the annual oppor-
tunity loss cost is calculated based on stochastic daily demand. While the average service level is 
estimated as the proportion of the annual supply to the annual demand for each PSC entity in the 
wholesalers and manufacturers’ echelons. 

 
Table 1 Inputs for the HH simulation model 

Parameter Symbol Sub model 
 SD                                  DE 

Number of drugs I √ √ 
Number of drugs wholesalers J √ √ 
Number of drugs manufacturers K √ √ 
Number of RMs L                                         √ 
Number of RM suppliers M                                         √ 
Number of RMs needed to produce drug i Ni                                         √ 
Pharmacies stochastic demand for drug i from wholesaler j DPij √ 
Wholesaler j order quantity of drug i from drugs manufacturers k Wjik √                                     √ 
Other demand of drug i from drugs manufacturers k Diks                                         √ 
Other demand selling price (per unit) of drug i from drugs manufacturer k SPik                                         √ 
Wholesaler j reorder point of drug i Rji √                                     √ 
Wholesaler j initial inventory of drug i Vji √                                     √ 
Wholesaler j holding cost (per unit) of drug i Hji √ 
Wholesaler j ordering cost (per order) of drug i Oji √ 
Wholesaler j purchasing cost (per unit) of drug i from drug manufacturer k Pjik  √  
Wholesaler j opportunity loss cost (per unit) of drug i Cji √ 
Drugs manufacturer k lead time distribution for drug i Tki √                                     √ 
RM l order quantity for drugs manufacturer k form RM supplier m Alkm                                         √ 
RM l reorder point for drugs manufacturer k Blk                                         √ 
RM l initial inventory at drugs manufacturer k Elk                                         √  
RM l holding cost (per unit) at drugs manufacturer k Flk                                         √ 
RM l ordering cost (per order) at drugs manufacturer k from RM supplier m Glkm                                         √ 
RM l purchasing cost (per unit) at drugs manufacturer k from RM supplier m Qlkm                                         √ 
Amount of RM l needed to produce 1 batch of drug i Ul                                         √ 
RM supplier m lead time distribution for RM l Vml                                         √ 
Drugs manufacturer k initial inventory of drug i Wki √                                     √ 
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Table 1 (Continuation) 
Drugs manufacturer k production start point of drug i Xki                                         √ 
Drugs manufacturer k production batch size of drug i Yki                                         √ 
Drugs manufacturer k number of mixing machines NMk                                         √ 
Drugs manufacturer k number of packaging machines NPk                                         √ 
Drugs manufacturer k mixing time to produce 1 batch of drug i MTki                                         √ 
Drugs manufacturer k packaging time to produce 1 batch of drug i PTki                                         √ 
Drugs manufacturer k setup and inspection time to produce 1 batch of drug i STki                                         √ 
Drugs manufacturer k mixing cost to produce 1 batch of drug i MCki                                         √ 
Drugs manufacturer k packaging cost to produce 1 batch of drug i PCki                                         √ 
Drugs manufacturer k setup and inspection cost to produce 1 batch of drug i SCki                                         √ 

 
Table 2 Outputs of the HH simulation model 

Parameter                                                                Symbol Parameter                                                                                   Symbol 
Wholesaler j lost orders of drug i WLOji Drugs manufacturer k service level of drug i MSLki 
Wholesaler j service level of drug i WSLji Drugs manufacturer k opportunity loss cost of drug i MLCki 
Wholesaler j opportunity loss cost of drug i WLCji Drugs manufacturer k total lost orders MLOk 
Wholesaler j total lost orders WLOj Drugs manufacturer k total holding cost MHCk 
Wholesaler j total holding cost WHCj Drugs manufacturer k total ordering cost MOCk 
Wholesaler j total ordering cost WOCj Drugs manufacturer k total purchasing cost MPCk 
Wholesaler j total purchasing cost WPCj Drugs manufacturer k total opportunity loss cost MLCk 
Wholesaler j total opportunity loss cost WLCj Drugs manufacturer k total production cost MPrCk 
Wholesaler j service level WSLj Drugs manufacturer k service level MSLk 
Wholesaler j revenue WRj Drugs manufacturer k revenue MRk 
Wholesaler j profit WPj Drugs manufacturer k profit MPk 
Wholesaler j profit margin WPMj Drugs manufacturer k profit margin MPMk 
Drugs manufacturer k lost orders of drug i MLOki    

Model structure 

As can be seen in Fig. 2, four hierarchical levels are presented in the proposed model with differ-
ent levels of details. The highest or aggregate level, shown in blue, controls the material and in-
formation flow between the PSC echelons. The next highest level, shown in pink, controls the 
order fulfillment processes in the echelons of wholesalers and manufacturers. It receives input 
data from the lower level regarding inventory details, processes it, and then provides the neces-
sary outputs and actions to the next higher level in the HH simulation model. The third level, 
shown in yellow, simulates inventory management of produced drugs in wholesalers and manu-
facturers' echelons. Finally, the lowest level, shown in green, is simulating the replenishment 
process for wholesalers' echelon as well as RM inventory management and production process 
in manufacturers' echelon. The system checks the inventory level, if there is enough inventory, 
the order will be prepared to be shipped, and the new inventory level will be compared to the 
reorder point (ROP), if it is reached, a signal will be sent to the replenishment sub model in level 
four. If there is not enough inventory, a signal will be sent to the lost orders sub model. 
 A basic feature of this HH simulation model is its capability to handle aggregate data such as 
material and information flow between the PSC entities, at the same time; it handles detailed 
data related to the drugs production process. This is achieved by employing the hierarchy con-
cept in parallel with simulation hybridity. As mentioned earlier, most scholar work concentrates 
on one part while ignoring the other due to modelling complexity and computation time con-
straints. 
 It is worth noting that most activities, represented as rectangular boxes in Fig. 2, are entire 
processes that are simulated separately by either SD or DE sub models. For example, as shown in 
Fig. 2, the replenishment process is composed of multi sub-activities in which information relat-
ed to inventory position and immediate replenishment ability is exchanged between wholesalers 
and manufacturers' echelons. If the manufacturer with the lowest prices has enough inventory 
to fulfil the wholesaler order immediately, then the order is purchased from this source. Other-
wise, the wholesaler will look for other manufacturers (competitors) with different prices and 
lead time distributions to fulfil the order.  
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2.2 Screening process of the model’s inputs and outputs 

In a global simulation model, like the one developed in this study, the number of input parame-
ters is too large to be directly fed into an optimization step. Moreover, the targets of the optimi-
zation process are considerably diversified than to be gathered in one objective function and 
optimizing such objective function would not be attainable due to potential conflict between 
these targets and/or computation time constraints. For such a complicated scenario, a screening 
process is proposed, first, to select the influential model inputs and hence use them as decision 
variables in the optimization step. Second, to specify the sensitive outputs of the HH simulation 
model that are highly influenced by the variation in input parameters. One practical way to per-
form this screening process is to use sensitivity analysis or "What-if" scenarios. In sensitivity 
analysis, a large number of simulation trials are performed in which the model outputs are mon-
itored while varying the model inputs in order to decide which outputs are more sensitive to 
these variations (sensitive outputs) and which inputs variation has significant effects on these 
outputs. 
 In theory, the screening process is a sensitivity analysis or “What-if” scenarios when all the 
HH simulation model inputs are varied to monitor the resultant change in all the HH simulation 
model outputs. In other words, the theoretical screening process would include the following 
steps: firstly, instead of using one value for each input of the simulation model, a range of values 
is used for each input (one value at a time), secondly, the simulation model is run at each value 
and the simulation model outputs are monitored. The outputs that significantly vary with the 
variation in the input parameters are considered as sensitive outputs, accordingly, they will be 
chosen to be the optimization targets or the objective function terms for the optimization step. 
However, in reality, not all input parameters can be changed because not all of them are under 
control. For instance, in a real existing PSC, the number of entities (e.g., wholesalers, manufac-
turers, suppliers) are fixed and not subjected to changes in normal situations. As a result, there 
is no use in varying the number of PSC entities and monitor the sensitive outputs since the num-
ber of entities is already fixed in a certain PSC. Another example is the inputs whose values are 
determined externally, hence cannot be practically varied by the decision makers such as market 
demand. Based on that, the prospect decision variables to be fed to the optimization step are 
defined as all the input parameters that can be controlled by decision makers in a certain PSC. 
These prospect decision variables (shaded in Table 1) are chosen based on the authors' experi-
ence with real-world PSC in parallel with experts' opinions. They include reorder point, initial 
inventory, and order quantity for different entities in the PSC plus the production start point for 
the drugs’ manufacturers. It is worth mentioning that the algorithm is generic enough to choose 
different prospect decision variables based on studied cases. 
 

 
Fig. 3 The screening process flowchart 



Altarazi, Shqair 
 

72 Advances in Production Engineering & Management 18(1) 2023 
 

To perform the screening process a code is programmed within the used simulation toolkit, 
the algorithm behind this code is shown in Fig. 3. The user enters an array that consists of the 
prospect decision variables (variable X in Fig. 3) with the selected range of variation. The pro-
gram will start scanning the input parameters, if the input parameter is in the prospect decision 
variables list, the simulation model will perform multi-simulation runs according to the pre-
specified range of variation and monitor the simulation model outputs (variable Y in Fig. 3). 
Then, the model will check the variation range in all the simulation model outputs to decide if 
the output is sensitive or not. If it is, it will be added to the optimization targets. After the screen-
ing process is completed, two lists of variables are ready to be fed to the optimization step, the 
decision variables list, which contains the influential inputs of the HH simulation model, and the 
optimization targets list that includes the sensitive outputs of the HH simulation model. 

2.3 Optimization of the model sensitive outputs 

Due to the complexity and stochasticity nature of simulation systems, an analytical expression 
for the objective function does not exist in SO, instead, it is estimated as a function of the sto-
chastic simulation outputs either if the decision variables are discrete or continuous. In case of 
continuous decision variables, gradient-based methods such as stochastic approximation are 
used. Yet, in discrete decision variables with finite feasible region, ranking and selection meth-
ods could be used. If the feasible region is finite but significantly large, metaheuristics such as 
Tabu search, genetic algorithm, simulated annealing, neural networks are used (18).  
 In this paper, OptQuest optimization package, which is included in AnyLogic simulation soft-
ware, is used. This optimization package uses scatter search, Tabu search, and neural networks 
algorithms to search within, the simulation runs, for optimal or near-optimal solutions [26]. Es-
sentially, OptQuest used adaptive memory of the search history to guide the solution searching 
process, preventing evaluating pre-investigated alternatives. In practice, the user should create 
an optimization experiment by determining the optimization targets (which are in our case the 
sensitive outputs obtained from the screening process), the decision variables (which are the 
influential inputs of our simulation model obtained from the screening process), the constraints, 
and the stopping criteria of the optimization process. 
 Fig. 4 illustrates the interaction between the simulation and optimization packages which can 
be summarized in the following points: 

• The simulation software performs simulation runs based on decision variables, obtained 
from the optimization package, and exports simulation outputs to the optimization pack-
age. 

• Based on the embedded search methods, the optimization package guides the subsequent 
simulation iterations to ensure that the new solution is closer to optimal than the previous 
one. 

 
Fig. 4 The interaction between the simulation and optimization packages        
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• The process will end when the stopping criterion is reached which could be based on sim-
ulation time or number of simulation iterations. 

3. Implementation, results, and discussion 
To validate the proposed approach with its three steps shown in Fig. 1, it was applied to the PSC 
of a leading pharmaceutical company in Jordan. The considered PSC network is described in 
Subsection 3.1 while Subection 3.2 illustrates the analysis and results obtained by applying the 
proposed approach to this PSC. 

3.1 The PSC network 

Generally, Jordanian pharmaceutical companies concentrate on the secondary pharmaceutical 
production process, which is taken into account in the current study, in which the active ingredi-
ent of the drug is processed and mixed with excipients to produce the drug in its commercial 
form. Since the core of any PSC is the drugs’ manufacturer, the authors contacted one of the larg-
est pharmaceutical companies in Jordan. Multi structured and semi-structured interviews were 
conducted with employees at different levels in order to collect qualitative as well as quantita-
tive data to be used in this study. The first route of interviews was dedicated to qualitative anal-
ysis in order to determine the major obstacles the company is facing regarding with the SC are-
na. The results of this step showed that for a certain type of drugs, which is injectable, the com-
pany's PSC suffers from a shortage problem, which leads to relatively high opportunity loss cost 
(8.5 % of the annual revenue). Based on the results obtained from the elementary qualitative 
analysis, the second route of interviews focused on gathering all the necessary data needed to 
simulate the PSC of injectable drugs. 
 The considered PSC network for injectable has two parallel material flows, the primary is a 
four-echelon and the other is a three-echelon. The first echelon is the RM suppliers' echelon that 
provides the drug’s manufacturer with RMs including active pharmaceutical ingredients (APIs), 
excipients, vials, labels, and boxes. Five local suppliers are responsible for supplying the compa-
ny with RMs at different prices and stochastic lead-time distributions. However, based on practi-
cal data given by the pharmaceutical company, RM supply is regular with no shortage occur-
rence. Consequently, RM feed is assumed to be unlimited in the HH simulation model. The sec-
ond echelon is the manufacturer echelon. The considered pharmaceutical company produces 
three different types of injectable. The preparation stage includes receiving and storing RMs in 
the RM warehouse at the pharmaceutical company. The production process is composed of four 
main stages, which are RM preparation, mixing, inspection, and packaging. Since the production 
process is secondary, the main operation is the dilution of the APIs with the specified types and 
amounts of excipients to produce the commercial form of the three injectable. The dilution or 
mixing is a batch production process that produces different batch sizes for each injectable. After 
the mixing process, various quality control procedures are applied in order to collect and test 
samples from the products to check different measures such as the concentration of the API in 
the produced injectable. This inspection process is followed by the final step, which is the pack-
aging process. The company has two identical production lines each with mixing and packaging 
machines. Also, each line can produce the three types of injectable interchangeably. Since the 
company has two different types of customers (the public health sector and the wholesaler), two 
slightly different packages are used for each injectable. Finally, the finished products (FPs) are 
stored in the FP warehouse at the company.  
 The third echelon comprises two entities, the wholesaler that is responsible for providing 
pharmacies with injectable, and the public health sector that provides hospitals with the injecta-
ble. The public health sector demand is deterministic, and it is replenished via periodic tender 
protocols. It is important to mention that if the company inventory is not enough to satisfy the 
wholesaler demand, the wholesaler replenishment would occur from other pharmaceutical 
companies (competitors) at different prices and stochastic lead time. Finally, the fourth echelon 
following the wholesaler represents the pharmacies with stochastic daily demand. 
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3.2 Results and analysis 

Based on the qualitative and quantitative data collected from the company as well as the whole-
saler entities, a HH simulation model, like the one shown in Fig. 2, was built to imitate the "As is" 
scenario for the injectable supply chain. The software package used to build the hybrid simula-
tion model is AnyLogic, a multimethod simulation modelling tool that supports DE, SD, and agent 
based (AB) methodologies [27]. Moreover, it supports Java coding which enabled authors to 
develop customized and complex events and subprograms for this HH simulation model. 
AnyLogic optimization package, used in the third step of the proposed approach, is built on top 
of the OptQuest Optimization Engine, which is considered one of the most powerful optimization 
tools available [26, 27].  
 The HH simulation model, with its various sub models, was constructed gradually until it was 
totally developed. Throughout the developing process, each sub model was verified and de-
bugged separately in parallel with numerical and graphical testing of some variables to check 
the logic as well as accuracy. A good example of the graphical testing and representation of the 
HH simulation model outputs is shown in Fig. 5. Fig. 5 is a screenshot of the graphical interface 
constructed to check the behavior of the HH simulation model through monitoring the plots of 
major variables and outputs versus simulation time. These include the wholesaler inventory 
status and lost orders, the drug’s manufacturer FP inventory status (with its two components of 
wholesaler package and public health sector package for each injectable), and the drug’s manu-
facturer lost orders and accumulative lost orders. Meanwhile, the tested sub models were con-
tinually aggregated into the HH simulation model until it was completed and totally verified. The 
major outputs of the "As is" scenario are illustrated in Table 3, based on a one-year run (in the 
model's time unit: 365 days). 
 

Table 3 Comparison between the major outputs of the "As is" scenario and the "After optimization" scenario 
Simulation model output Unit "As is" 

scenario 
"After optimization" 

scenario 
Change (%) 

The wholesaler lost orders box 887 346 -61.0 
The wholesaler ordering cost JD* 85,000 72,000 -15.3 
The wholesaler opportunity loss cost JD 483,380 190,101 -60.7 
The wholesaler service level % 98.8 99.5 0.7 
The pharmaceutical company lost orders box 9920 8480 -14.5 
The pharmaceutical company RM holding cost JD 1,819,799 1,767,452 -2.9 
The pharmaceutical company opportunity loss cost JD 3,478,500 3,147,000 -9.5 
The pharmaceutical company service level % 86.6 88.9 2.3 
 

                                
Fig. 5 The graphical interface used to monitor major variables and outputs of the simulation model 
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Fig. 6 The pharmaceutical company lost orders (boxes) versus simulation time (days) at different values of the 

        wholesaler order quantities 
 

Fig. 7 The pharmaceutical company lost orders (boxes) versus simulation time (days) at different values of the 
        wholesaler reorder points 
 

To check the HH simulation model validity, the "As is" scenario major outputs were compared 
to their actual values obtained from the company and the wholesaler. For instance, the annual 
opportunity loss costs for both the company and the wholesaler were compared to those calcu-
lated by the HH simulation model. The difference was found to be less than 5 %, which is consid-
ered to be within the acceptable level of accuracy. 

To perform the second step of the proposed approach which is the screening process, the "As 
is" scenario inputs and outputs were fed into the screening process algorithm described in Fig. 3. 
Figs. 7 and 8 are graphical representations of the screening process’s significant outcomes. Each 
one of the six plots in the Figs. shows the sensitive simulation outputs (which are the pharma-
ceutical company lost orders) of multiple "What-if" scenarios for each injectable. For instance, 
the green plot in Fig. 6 is the pharmaceutical company lost orders versus simulation time (in 
days) at different values of the wholesaler order quantity from injectable 1. While the green plot 
in Fig. 7 is the pharmaceutical company lost orders versus simulation time (in days) at different 
values of the wholesaler reorder point of injectable 1. The same is true for injectable 2 (red 
plots) and injectable 3 (blue plots). It could be seen clearly in the Figs that the pharmaceutical 
company lost orders are sensitive and highly dependent on the replenishment process of the 
wholesaler, represented in the order quantities and reorder points of each one of the three con-
sidered injectable. As mentioned earlier in the case description, the pharmaceutical company 
suffers from high annual opportunity loss cost for the injectable products, actually, the "As is" 
scenario results have assured this issue. However. It could not give explanations or possible rea-
sons for this problem. The screening process outcomes have revealed that this shortage problem 
is not related to the company’s internal factors such as production scheduling or RM availability. 
Instead, it is closely related to the lack of information sharing between the pharmaceutical com-
pany and the wholesaler entities. 
 As described in Section 3, the screening process results in two key results: influential inputs 
and sensitive outputs. In the considered implementation, the screening process has revealed six 
influential simulation inputs, as shown in Figs. 7 and 8, which are the wholesaler order quantity 
and reorder point for each one of the three injectable products. On the other hand, there are 
three sensitive simulation outputs which are the pharmaceutical company's lost orders for each 
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injectable. For optimization purposes, the opportunity loss cost was used rather than the num-
ber of lost orders, since it is more meaningful and representative to decision makers. 
In summary, the objective function of the optimization model was set to minimize the pharma-
ceutical company opportunity loss cost for each injectable and the decision variables are the 
wholesaler order quantity and reorder point for each injectable. It is worth noting that the deci-
sion variables lower and upper bounds are set based on the capabilities and available possibili-
ties discussed with the wholesaler. 

After the optimization model (the objective function and decision variables) is specified, the 
optimization experiment was performed, with 500 iterations, on OptQuest Optimization Engine 
of AnyLogic. The new values of the decision variables, obtained from the optimization step, were 
used to simulate the PSC performance. Table 4 compares the influential inputs of the "As is" sce-
nario and the "After optimization" scenario. It could be seen in the table that the wholesaler or-
der quantities have increased by 23.1 %, 11.1 %, and 44.4 % for injectable 1, 2 and 3, respective-
ly. While the reorder point has increased by 500 % and 100 % for injectable 1 and 3, respectively. 

Furthermore, Table 3 compares the major outputs of the "As is" scenario and the "After opti-
mization" scenario. Obviously, the lost orders have considerably dropped by 14.5 % for the 
pharmaceutical company and 61 % for the wholesaler. As a result, the opportunity loss cost has 
lowered by 9.5 % for the pharmaceutical company and 60.7 % for the wholesaler. Moreover, the 
service level has improved for both the pharmaceutical company and the wholesaler, with a 2.3 % 
and 0.7 % increase in turn. Another plus point is that other costs such as RM holding cost and 
the wholesaler ordering cost have also declined after performing the optimization process. 

 
Table 4 Comparison between the influential inputs of the "As is" scenario and the "After optimization" scenario 

Simulation model output Unit "As is" 
scenario 

"After optimization" 
scenario 

%Change 

The wholesaler order quantity from injectable1 box 1300 1600 23.1 
The wholesaler order quantity from injectable2 box 900 1000 11.1 
The wholesaler order quantity from injectable3 box 900 1300 44.4 
The wholesaler reorder point of injectable1 box 100 600 500 
The wholesaler reorder point of injectable2 box 100 100 0 
The wholesaler reorder point of injectable3 box 100 200 100 

4. Conclusion and future research 
The current study has presented a HH-SO approach that simulates the aggregate as well as the 
detailed levels in PSC. A three-step procedure has been proposed that develops a HH-SO model to 
mimic the processes within a four-echelon PSC, including material and information flow, order 
receiving, order fulfillment, inventory management, replenishment, and storage processes. Also, 
the production process, which is frequently ignored or simplified when SCs are simulated in 
related literature, is minutely modeled. A screening process is then performed to filter influential 
inputs as well as sensitive outputs of the simulation model. Later, the outputs of the screening pro-
cess are used to optimize the performance of the PSC. 

Using a case study, the proposed approach has depicted validity in handling real PSC implica-
tions such as multi echelons and multi products, stochasticity in demand and lead times, and varia-
tion in data granularity levels. The results obtained have shown that although this approach is 
designed to optimize the sensitive outputs of the simulation model, such as opportunity loss cost 
and service level at different PCS echelons; the values of other outputs are indirectly improved 
after applying the proposed approach. It is important to note that the suggested approach can be 
used with supply chains other than those for pharmaceuticals. This would alter the "discrete 
event simulation" paradigm's modelling of the particulars of the other supply chain's production 
process. But the fundamental structure of the "system dynamics" paradigm would hold. 

Regarding future work, the utilization of agent-based modeling (ABM) in a hybrid simulation 
environment would enhance the interaction among PSC entities, thereby increasing the respon-
siveness and autonomy of hybrid simulation models. The employment of ABM, with its intelli-
gent characteristics such as reaction, evolution, and adaptation, would facilitate the study of 
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complex adaptive systems, wherein the intricate behavior of the entire system emerges from the 
interaction of a large number of components capable of adjusting their performance over time 
based on their own experiences. 
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