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A B S T R A C T A R T I C L E   I N F O 
In response to the wide range of customer demands, the concept of reconfigu-
rable manufacturing systems (RMS) was introduced in the industrial sector. 
RMS enables producers to meet varying volumes of demand over varying time 
periods by swiftly adjusting its production capacity and functionality within a 
part family in response to abrupt market changes. In these circumstances, RMS 
are made to swiftly reconfigure their Reconfigurable Machine Tools (RMTs). 
RMTs are designed to have a variety of configurations that may be condition-
ally chosen and reconfigured in accordance with specific performance goals. 
However, the reconfiguration process is not an easy process, which entails op-
timization of several objectives and many of which are inherently conflictual. 
As a result, it necessitates real-time monitoring of the RMS's condition, which 
may be achieved by digital twinning, or the real-time capture of system data. 
The concept of using a digital replica of a physical system to provide real-time 
optimization is known as digital twin. This work considered a case study of dis-
crete parts manufacturing on a reconfigurable single manufacturing transfer 
line (SMTL). Six manufacturing operations are required to be performed on the 
parts at six production stages. This work uses the Digital Twin (DT) based ap-
proach to assist a discrete multi-objective optimization problem for a reconfig-
urable manufacturing transfer line. This multi-objective optimization problem 
consists of four objective functions which is illustrated by using DT-based Non-
dominated Sorting Genetic Algorithm-II (NSGA-II). The innovative aspect of the 
current study is the use of a DT-based framework for RMS reconfiguration to 
produce the best optimum solutions. The produced real-time solutions will be 
of great assistance to the decision maker in selecting the appropriate real-time 
optimal solutions for reconfigurable manufacturing transfer lines. 
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1. Introduction
Manufacturing has ushered in the digital era thanks to developments in data-acquisition systems, 
information technology (IT), and network technologies. With the fast progress of digital technol-
ogy, the industrial sector is confronting global issues against a backdrop of digitalization. In the 
present-day production environment, sophisticated manufacturing initiatives have been 
launched, including Industry 4.0, Industrial Internet of Things (IIoT), etc. Achieving smart manu-
facturing, usually referred to as intelligent manufacturing, which is the unifying goal of these ini-
tiatives [1]. Since the 1980s, intelligent manufacturing has been used to describe the nexus of 
manufacturing and artificial intelligence (AI) [2] . Nowadays, knowledge-based intelligent manu-
facturing is being replaced by data-driven and knowledge-enabled smart manufacturing, where 
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"smart" refers to the collection and usage of data [2]. Moreover, with the evolution of AI, Internet 
of Things (IoT), the Digital twins (DTs) and Reconfigurable manufacturing systems (RMS) are con-
sidered among the smart technologies that are adopting a vital role in the new generation manu-
facturing [2], [3]. 

1.1 Reconfigurable manufacturing systems 

An emerging area in the era of Industry 4.0 is Reconfigurable Manufacturing Systems (RMS). Past 
two decade ago, this new paradigm of manufacturing systems has emerged in order to cope with 
circumstances where the capacity and productivity of the system must respond to fluctuation [4]. 
RMS offer customized flexibility through scalability and reconfiguration as needed in order to meet 
customer demand [5]. An RMS is built from the ground up to accommodate quick structural, soft-
ware, and hardware changes in order to quickly adjust production capacity and functionality [4].  

An RMS is designed around a part family and manufactures all the variants of the part family. 
The system require reconfiguration when switching from one part family to another, which is a 
labour and financially-intensive operation. The difficulty and expense of changing configurations 
relies on the original configuration already in place and the new configuration needed to produce 
orders in the future that belong to a different part family [6]. Hence, RMS is a component of indus-
try 4.0 which is based upon digitization [7] where all parts of an industry are connected and have 
real-time communication capabilities. Digital Twin (DT) is one such technology that emerged as a 
tool for achieving intelligent production through RMS [8]. 

1.2 Digital Twin 

Digital Twin (DT) is considered as a new data-driven vision that brings together real-time data 
analytics, optimization, and simulation. DT is composed of two major components (physical and 
virtual), with real-time data transfer between them, i.e., each system consists of two parts, a phys-
ical part and a virtual one that contains all of the information about the physical part [8]. DT ana-
lyzes, and evaluates the massive quantity of data gathered (in real-time/offline mode), resulting 
in improved system transparency [18]. As a result, a wide range of information may be gathered 
and used for a variety of purposes, including tracking system condition, generating predictions, 
diagnosing, simulating, and optimizing the system [9].  

1.3 Digital twinning of RMS 

Reconfigurable machine tools (RMTs) are an integral part of RMS. These RMTs are required to be 
reconfigured from time to time as per the system requirements. The reconfiguration of RMTs can 
be done by keeping the basic modules of RMTs as it is and adding/replacing/rearranging the aux-
iliary modules according to the system needs. However, the reconfiguration of RMTs is a complex 
process which requires a lot of technical support from the technology like Digital Twin (DT). By 
simulating the reconfiguration on a virtual environment, DT enables the solution of the challeng-
ing RMT reconfiguration issues [20]. As a result, this work suggests the idea of the DT-based se-
lection of RMTs and its respective configurations for RMS.  

A digital twin of an RMT consists of both its physical and virtual counterparts as well as con-
tinuous data transfer between them. The virtual RMT is updated with the most recent states of 
the physical RMT thanks to the data flow from the physical RMT to the virtual RMT, which keeps 
the virtual RMT in a high-fidelity condition. Hence, the virtual RMT may be used to check on the 
functionality of the actual RMT [10]. 

Moreover, a DT is composed up of four layers, which correspond to data collecting, data trans-
mission, data aggregation, and decision-making. This is based on the DT's anticipated functional-
ity. The third and fourth layers of a DT focuses areas pertaining to reconfiguration process in RMS. 
The DT models must be changing in real-time while executing concurrently with the reconfigura-
tion process.  

Since, Digital Twinning of RMS involve gathering a range of information and using it for a vari-
ety of purposes like for simulating and optimizing the system [11]. This work presented a frame-
work that addresses the fourth layer of DT that involve simulation of a multi-objective optimal 
configuration selection problem for a Single Manufacturing Transfer Line (SMTL). The problem 
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has been illustrated by using non-dominated sorting Genetic algorithm (NSGA-II). In a SMTL, a 
family of raw materials enters the production line at one end, it undergoes various number of 
operations which are generally being performed at various stages and finally leaves the produc-
tion line at the other end after finished product. At each stage, a reconfigurable manufacturing 
tool with different changeable RMT configurations having capability to perform variety of opera-
tions has been switched over. When one product family type gets finished, the RMT configurations 
at the stages are changed (if needed) for processing/manufacturing another product family [12]. 
A Multi-objective optimization problem (MOOP) based on best optimal configuration selection of 
machines in a SMTL is considered which comprises four conflicting parameters, i.e., one parame-
ter (cost) that should be minimised and three other parameters (reconfiguration factor, process 
feasibility, and reliability) which should be maximised simultaneously till optimized level. 

2. Literature review 
2.1 Beginning and advacements in Digital Twins 

As defined in [13], “A Digital twin can be defined as a virtual representation of a physical asset 
enabled through data and simulators for real-time prediction, optimization, monitoring, control-
ling, and improved decision making”. In 2003 lecture, Michael Grieves coined the word "Digital 
Twin" for the first time [14]. Due to the constraints and initial stages of the technology at the time, 
there was essentially no pertinent research or applications [14]. The development of DTs is cur-
rently made possible by new IT advancements. Product design [15], manufacturing [16], manu-
facturing line design [17], prognosis [18], health management, retail and water supply [16] are 
just a few of the recent uses of DTs in a variety of sectors. Several significant companies, including 
General Electric, Siemens, etc. adopt DT industrial methods to boost their product performance. 
This viewpoint reveals how widespread DT's technical uses are. DT is hence comparable to an 
engineering category as compared to CPS. In this context, Tao et al. [19] suggested a method for 
product design and manufacturing driven by DT, the application methods and frameworks were 
investigated and case studies were illustrated for future applications of DT. Qi et al. [20] found 
that through integration of the physical and digital worlds in production, DT offers a potential 
chance to adopt smart manufacturing and industrial 4.0. A DT of a cutting tool was provided by 
Botkina et al. [21], they discussed the data format and structure, information flows, and data man-
agement of the digital version of a physical tool as well as potential future applications and 
productivity analyses. A decision support system for the order management process in manufac-
turing systems was studied by Kunath & Winkler [22] based on the DT-based conceptual frame-
work and prospective applications. Durão et al. [23] conducted a study aiming to address two 
research inquiries, i.e., what are the main criteria involved in creating a DT, and how does the 
industry comprehend the concept of DT? Their work provided an explanation and evaluation of 
the requirements for DT. Luo et al. [24] described a modelling method of DT for CNC machine tools 
and provided a demonstration of DT application scenarios in CNC machine tool era. Another 
similar work presented types of data and technology required to build the DT of each stage for an 
injection moulding industry and how to integrate these DT models [25]. Twin [26] discussed a DT 
demonstrator method involving the design and implementation for privacy enhancement mecha-
nisms in the automotive industry. 

2.2 Integration of Digital Twin with RMS 

In this context, a method for designing and simulating an RMS by employing the DT technique was 
proposed [27]. Another RMS-DT based modular structure [9] was reported to predict the condi-
tion of a system at any given time while enabling comprehensive system visibility to enhance per-
formance and allowing flexible decision-making. Tang et al. [28] introduced the DT-RMS idea, 
which allowed for high levels of transparency about data, performance, and pertinent reconfigu-
ration decisions by creating a dynamic cyber-replica of the physical production environment. A 
DT based analytical model for performance evaluation of manufacturing system integrating eval-
uation of joint parameter fluctuations was introduced that focused in particular on the advantages 
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of an integrated system model that may provide tactical decision makers [29]. The functionality 
of a simulation program with a DT simulation program was compared by some academicians [30] 
for incorporation of DT into RMS. Two simulation models were compared by using the Plant sim-
ulation 11 for a normal simulation model and Visual components for a DT model. The idea of a 
creating DT of an RMT was presented to carry out reconfiguration experiments on a high-fidelity 
virtual RMT in order to tackle complicated reconfiguration challenges. Three components for the 
RMT-DT were explored, considering the design processes of RMT during reconfiguration. Another 
idea [10] of Digital twinning of an RMT was presented for carrying out reconfiguration experi-
ments on a high-fidelity virtual RMT in order to address complicated reconfiguration challenges. 

2.3 Optimal configuration selection in RMS 

One of the emerging area in the era of Industry 4.0 is RMS which offers customized flexibility 
through reconfiguration and scalability as needed in order to meet consumer needs [5]. When 
switching from one part family to another, the system may need to be reconfigured, which is a 
labour and money-intensive procedure. The difficulty and expense of changing configurations re-
lies on the original configuration already in place and the new configuration needed to produce 
orders in the future that belong to a different part family [6]. For producing multiple part families, 
RMS optimal configurations at production stages must be identified. In relation to that Hasan et al. 
[6] determined the best optimal configuration of an RMS required by multiple part family orders. 

2.4 Multi-objective optimization 

In the present days, several kinds of Multi-objective optimization problems (MOOP) are correlated 
with manufacturing systems [31]. These problems are often solved by using a range of evolution-
ary algorithms. In this relation, Yu et al. developed a tailored instruction method in combination 
with the notion of non-dominated sorting [32]. In a discrete MOOP, Ashraf et al. considered the 
multiple conflicting objectives for RMT configuration rearrangement [12]. Dou et al. [33] sug-
gested the multi-objective particle swarm optimization (MoPSO) technique for RMS's integrated 
configuration design and scheduling. Liu et al. [34] investigated a multi-module RMS for multi-
product manufacturing. A mixed-integer programming model was presented in order to minimise 
the total cost and minimise the cycle time simultaneously. This work compared the efficiency of 
the proposed algorithm with a classic NSGA. Xu et al. [35] developed NSGA-III algorithm to ad-
dress the multi-objective model and reported that the designed multi-objective model success-
fully decreases system downtime. Another work [36] optimized multiple objectives in the estima-
tion of heat transfer coefficients while numerically simulating the quenching process of cylindrical 
steel samples. The proposed approach reported that it outperformed the results of existing works 
in terms of faster convergence time. Umer et al. [37] investigated four parameters with three levels 
of machining performance variables while machining Aluminium based composites, the utiliza-
tion of the NSGA-II enabled the achievement of multi-response optimization objectives. Amjad et 
al. [38] proposed a four-layered genetic algorithm (GA) for a flexible job shop scheduling problem, 
while Xu et al. [39] investigated a scheduling problem in manufacturing by applying standard GA. 

From the above literature review, it can be concluded that several continuous MOOPs has been 
solved by using NSGA-II. However, no research addressed the DT-based application of NSGA-II for 
a discrete kind of optimal configuration selection problem for RMS. 
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3. Problem formulation 
3.1 Evolutionary multi-objective optimization 

Many real-life problems comprise multiple performance parameters, or objectives, which should 
be optimized simultaneously. These performance parameters are termed as objective functions. 
Such kind of optimization problems which consist of multiple objective functions are called as 
Multi-Objective Optimization Problems (MOOPs). A MOOP comprises simultaneous optimization 
of certain objective functions which have to be maximized or minimized. It may enclose several 
constraints which any viable solution (i.e., all optimal solutions) need to satisfy. Since all the ob-
jectives can either be maximized or minimized, thus, the MOOP can be represented in its general-
ised form as defined in Eqs. 7 and 8. The MOOPs become more challenging when the objectives 
are conflicting in nature [40], i.e., the objectives are generally contradictory in nature, preventing 
optimization of each objective concurrently and most of the real engineering problems actually 
do have conflicting multiple-objectives which are unified into one objective [41]. 

3.2 Revised Non-Dominanted Sorting Genetic Algorithm 

Revised Non-dominated Sorting Genetic Algorithm (NSGA-II) is found an effective tool for solving 
MOOPs. It is reported that when compared to other evolution techniques, NSGA-II is found to have 
significantly greater distribution of solutions and superior convergence near Pareto-optimal front 
[4]. A key aspect of NSGA-II is that the best members are chosen from a pool of parent and off-
spring solutions (produced by parent crossover and mutation) and are further used as the parents 
of the subsequent generation. It maintains elitism, which limits the variety of the solutions and 
retain the ones having greater fitness over the generations together with the other solutions, 
while the solutions with lower fitness are swept away with the passing of generations. The best 
solutions are produced in the first pareto-front, that is how NSGA-II implements the idea of choos-
ing non-dominated solutions. 

3.3 DT-based MOOP in RMS 

This work considered a case study of discrete parts (see Fig. 1 in Section 6) manufacturing on a 
reconfigurable single manufacturing transfer line (SMTL). Six manufacturing operations, i.e., Mill-
ing, Grinding, Drilling, Boring, Surface finishing, and Assembly are required to be performed on 
the parts at six production stages, S-I, S-II,….,S-VI. 

It involves four performance parameters, i.e., operating cost, reconfiguration factor, process 
feasibility factor and reliability factor in a SMTL that involve discrete MOOP for developing a de-
cisive criterion in selecting machine tool and its corresponding configuration. For a SMTL, the as-
signment of machine and its configuration on the stages is carried out based on the four afore-
mentioned objectives by applying NSGA II, the notations used in the problem definition are pre-
sented in Tables 1-4. 

Table 1 General notations for SMTL modelling 
𝑀𝑀𝑡𝑡 Cluster of all machine tools engaged in a SMTL.  
𝑀𝑀𝑐𝑐 Cluster of all machine tool configurations engaged in a SMTL |∀𝑀𝑀𝑐𝑐 ∈ 𝑀𝑀𝑡𝑡. 
𝑃𝑃𝑐𝑐 Cluster of processes required to be performed on the parts. 
𝑀𝑀𝐶𝐶𝑝𝑝 Cluster of feasible alternative RMT configurations essential to execute 𝑝𝑝𝑡𝑡ℎ operation |∀𝑝𝑝 ∈ 𝑃𝑃𝑐𝑐 . 
𝑀𝑀𝐶𝐶𝑚𝑚𝑐𝑐  A specific machine tool 𝑚𝑚 in its  𝑐𝑐𝑡𝑡ℎconfiguration | ∀ 𝑚𝑚 ∈ 𝑀𝑀𝑡𝑡 and ∀ 𝑐𝑐 ∈ 𝑀𝑀𝑐𝑐 
𝑀𝑀𝐶𝐶𝑖𝑖

𝑗𝑗 A possible alternative configuration of an 𝑖𝑖𝑡𝑡ℎ machine in its 𝑗𝑗𝑡𝑡ℎ  configuration 
𝐽𝐽𝑖𝑖 Maximum possible number of configurations of a machine tool 𝑀𝑀𝐶𝐶𝑖𝑖│∀𝑀𝑀𝐶𝐶𝑖𝑖 ∈ 𝑀𝑀𝑡𝑡. 
𝐷𝐷𝑟𝑟 Demand rate (parts/hr) 
𝑠𝑠 Production stage of a reconfigurable Serial product transfer line |1 ≤ 𝑠𝑠 ≤ 𝑆𝑆. 
𝜓𝜓 Power index for Process feasibility 
𝑁𝑁𝑖𝑖
𝑗𝑗 Number of machine tools required to meet the demand when a specific machine tool in its configura-

tion 𝑀𝑀𝐶𝐶𝑖𝑖
𝑗𝑗is selected | ∀ 𝑖𝑖 ∈ 𝑀𝑀𝑡𝑡 and ∀𝑗𝑗 ∈ 𝑀𝑀𝑐𝑐 . 

𝐶𝐶𝑀𝑀𝑖𝑖
𝑗𝑗 Cost of a specific machine tool in its configuration 𝑀𝑀𝐶𝐶𝑖𝑖

𝑗𝑗| ∀ 𝑖𝑖 ∈ 𝑀𝑀𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝑗𝑗 ∈ 𝑀𝑀𝑐𝑐 
𝑃𝑃𝑖𝑖
𝑗𝑗𝑜𝑜 Capacity (parts/hour) of 𝑖𝑖𝑡𝑡ℎmachine with its 𝑗𝑗𝑡𝑡ℎconfiguration for performing the 𝑜𝑜𝑡𝑡ℎoperation | ∀ 𝑜𝑜 ∈

𝑂𝑂, ∀ 𝑖𝑖 ∈ 𝑀𝑀𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 ∀ 𝑗𝑗 ∈ 𝑀𝑀𝑐𝑐 
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Table 2 Decision variables for SMTL modelling 
𝐶𝐶𝑂𝑂𝑖𝑖

𝑗𝑗 Cost of operating machine tool configuration 𝑀𝑀𝐶𝐶𝑖𝑖
𝑗𝑗from the alternative feasible machine tools and its 

respective feasible configurations for the execution of a process at demand rate 𝐷𝐷𝑟𝑟| ∀𝑖𝑖 ∈ 𝑀𝑀𝑡𝑡 and 𝑗𝑗 ∈
𝑀𝑀𝑐𝑐 

𝑀𝑀𝑅𝑅𝑖𝑖
𝑗𝑗 Machine reconfiguration factor for allocating 𝑀𝑀𝐶𝐶𝑖𝑖

𝑗𝑗 from the alternative feasible machines with its re-
spective feasible configurations for the execution of a process at a demand rate 𝐷𝐷𝑟𝑟| ∀𝑖𝑖 ∈ 𝑀𝑀𝑡𝑡 and 𝑗𝑗 ∈
𝑀𝑀𝑐𝑐 . 

𝑃𝑃𝐹𝐹𝑖𝑖
𝑗𝑗 Process feasibility of a RMT configuration for allocating 𝑀𝑀𝐶𝐶𝑖𝑖

𝑗𝑗on SMTL from the alternative feasible 
machines with its configuration for the execution of a process at the demand rate 𝐷𝐷𝑟𝑟| ∀𝑖𝑖 ∈ 𝑀𝑀𝑡𝑡 and 𝑗𝑗 ∈
𝑀𝑀𝑐𝑐 

𝑅𝑅𝑅𝑅 Reliability of the SMTL 
𝑅𝑅𝑖𝑖𝑠𝑠
𝑗𝑗𝑠𝑠  Reliability of allocating𝑀𝑀𝐶𝐶𝑖𝑖

𝑗𝑗on the 𝑠𝑠𝑡𝑡ℎ stage from the alternative feasible machine tools with its re-
spective feasible configurations for executing a process at a demand rate𝐷𝐷𝑟𝑟| ∀𝑖𝑖 ∈ 𝑀𝑀𝑡𝑡 and 𝑗𝑗 ∈ 𝑀𝑀𝑐𝑐 . 

Table 3 Notations for machine reconfiguration factor (MRF) 
𝛾𝛾 Machine reconfiguration index 
𝜆𝜆 Weightage for the number of modules that need to be added while changing RMT configurations. 
𝜇𝜇 Weightage for the number of modules that need to be eliminated while changing RMT configurations. 
𝛿𝛿 Weightage for the number of modules that need to be readjusted while changing RMT configurations. 
𝐴𝐴𝑖𝑖
𝑗𝑗 Set of auxiliary modules needed in 𝑖𝑖𝑡𝑡ℎ  machine with its 𝑗𝑗𝑡𝑡ℎ configuration | ∀ 𝑖𝑖 ∈ 𝑀𝑀𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝑗𝑗 ∈ 𝑀𝑀𝑐𝑐 . 

𝛷𝛷𝑖𝑖,𝑜𝑜
𝑗𝑗  

�
1, if 𝑜𝑜𝑡𝑡ℎ𝑜𝑜peration can be performed selecting 𝑖𝑖𝑡𝑡ℎ machine with its 𝑗𝑗𝑡𝑡ℎ configuration | ∀ 𝑖𝑖 ∈ 𝑀𝑀𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝑗𝑗 ∈ 𝑀𝑀𝑐𝑐

0, otherwise                                                                                                                                                                                    
 

𝑌𝑌 Secondary modules set up in the 𝑖𝑖𝑡𝑡ℎ  existing feasible machine with its 𝑗𝑗𝑡𝑡ℎ configuration 
𝑍𝑍 Secondary modules set up in the 𝑖𝑖𝑡𝑡ℎ  configured feasible machine with its 𝑘𝑘𝑡𝑡ℎ configuration 

Table 4 Optimization and ranking parameters 
F1, F2, F3, F4 Objective functions 

𝑓𝑓𝑖𝑖  The 𝑖𝑖𝑡𝑡ℎ objective function which is to be minimized |1 ≤ 𝑖𝑖 ≤ 𝐼𝐼. 
𝐼𝐼 Maximum number of objective functions. 

𝑔𝑔𝑗𝑗(𝑥𝑥) ≥ 0 Inequality constraint. 
𝑥𝑥 Decision variable vector representing a feasible solution, i.e., satisfying the 𝐽𝐽 inequality con-

straints and 𝐾𝐾 equality constraints. 

 

4. Performance parameters 
The allocation of a feasible machine and its optimal configuration on the production stages of 
SMTL for execution of a process is based upon four performance factors: (1) Operating cost, (2) 
Machine Reconfiguration factor (MRF) (3) Process feasibility of a RMT configuration, and (4) Re-
liability of the system. Here, the operating cost refers to operating cost of the RMT configuration 
which is an attribute that is to be minimised. The other three attributes, i.e., Process feasibility, 
Reconfiguration factor and Reliability are beneficial attributes which have to be maximised. The 
Process feasibility is the ability of a RMT configuration to perform certain number of processes, 
MRF represent the responsiveness of a machine and Reliability refers to the reliability of the 
SMTL. 

In the previous works, no such all-inclusive work has been done considering these four perfor-
mance parameters for searching an all-inclusive suitability of a possible alternative RMT configu-
ration in a SMTL. In the succeeding section, four performance factors [4]are discussed for deter-
mining a comprehensive fitness of a possible alternative RMT configuration. 

4.1 Operating cost 

The operating cost of a feasible alternative RMT configuration for performing the oth process at a 
certain demand rate Dr is evaluated from Eqs. 1 and 2:  

𝐶𝐶𝑂𝑂𝑖𝑖
𝑗𝑗 = 𝑁𝑁𝑖𝑖

𝑗𝑗 × 𝐶𝐶𝑀𝑀𝑖𝑖
𝑗𝑗  (1) 

𝑁𝑁𝑖𝑖
𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐷𝐷𝑟𝑟/𝑃𝑃𝑖𝑖

𝑗𝑗𝑗𝑗) ⋅ �𝐷𝐷𝑟𝑟/𝑃𝑃𝑖𝑖
𝑗𝑗𝑗𝑗� (2) 
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4.2 Machine reconfiguration factor 

Machine Reconfiguration factor (MRF) indicates the feasibility of Reconfiguration of machine, that 
can be accomplished by adding, deleting, or readjusting the auxiliary modules in addition to main-
taining the primary modules in the current configuration. In the present work, the number of 
modules to be included/discarded/rearranged are evaluated along with the total modules while 
changing machine from one of its configuration to other configuration say from 𝑐𝑐1 to 𝑐𝑐2. It also 
shows the auxiliary module set-Y which involve the secondary modules of machine 𝑚𝑚 in its 𝑐𝑐1 
configuration, i.e., 𝑀𝑀𝐶𝐶𝑚𝑚

𝑐𝑐1  and auxiliary module set-Z consist of the auxiliary modules of machine 𝑚𝑚 
in its 𝑐𝑐2 configuration, i.e., 𝑀𝑀𝐶𝐶𝑚𝑚

𝑐𝑐2 . The machine 𝑀𝑀𝐶𝐶𝑚𝑚
𝑐𝑐1  is reconfigured by eliminating unnecessary 

secondary modules from set-Y, adding modules from set-Z, and changing or keeping the shared 
auxiliary modules between set-Y and set-Z. Thus, the reconfiguration of RMTs is evaluated by us-
ing Eq. 3. 

𝑀𝑀𝑅𝑅𝑖𝑖
𝑗𝑗 =

[𝐽𝐽𝑖𝑖 − 1]𝛾𝛾

�𝑁𝑁𝑖𝑖
𝑗𝑗 × ∑ �𝜆𝜆 ×

�𝐴𝐴𝑖𝑖𝑘𝑘 − 𝐴𝐴𝑖𝑖
𝑗𝑗�

�𝐴𝐴𝑖𝑖
𝑗𝑗 ∪ 𝐴𝐴𝑖𝑖𝑘𝑘�

+ 𝜇𝜇 ×
�𝐴𝐴𝑖𝑖

𝑗𝑗 − 𝐴𝐴𝑖𝑖𝑘𝑘�
�𝐴𝐴𝑖𝑖

𝑗𝑗 ∪ 𝐴𝐴𝑖𝑖𝑘𝑘�
+ 𝛿𝛿 ×

�𝐴𝐴𝑖𝑖
𝑗𝑗 ∩ 𝐴𝐴𝑖𝑖𝑘𝑘�

�𝐴𝐴𝑖𝑖
𝑗𝑗 ∪ 𝐴𝐴𝑖𝑖𝑘𝑘�

�𝐽𝐽𝑖𝑖
𝑘𝑘=1,𝑘𝑘≠𝑗𝑗 �

 
(3) 

4.3. Process feasibility 

An 𝑜𝑜𝑡𝑡ℎprocess is performed such that ∀ 𝑜𝑜 ∈ 𝑂𝑂, the Process feasibility of a viable alternative RMT 
configuration is formulated on the basis of variety of processes that can be executed by the ma-
chine in its existing configuration. Increase in number of processes performed by a machine, in-
creases the process feasibility. Hence, the aim of this research is to maximise the process feasibil-
ity of an RMT. The process feasibility of a viable alternative RMT configuration to accomplish cer-
tain process with 𝜓𝜓 as power index, is determined by using Eq. 4. 

4.4 Reliability 

In a SMTL, at each stage a machine performs certain process which indicates, all the machines are 
linked in series. For the series linking of machines, reliability of the whole SMTL can be calculated 
by using Eq. 5. 

𝑅𝑅𝑅𝑅 = �𝑅𝑅𝑖𝑖𝑠𝑠
𝑗𝑗𝑠𝑠

𝑆𝑆

𝑠𝑠=1

 (5) 

5. Multi-objective optimization function 
The multiple objective functions comprising four objective function for the present problem are 
defined in Eq. 6. The overall optimization problem is transformed into a minimization problem by 
multiplying the beneficial objective functions F2, F3, and F4 with a negative sign. 

Minimize, F1 = �𝐶𝐶𝑂𝑂𝑖𝑖𝑠𝑠
𝑗𝑗𝑠𝑠

𝑆𝑆

𝑠𝑠=𝐼𝐼

 

Maximize, F2 = �𝑀𝑀𝑅𝑅𝑖𝑖𝑠𝑠
𝑗𝑗𝑠𝑠

𝑆𝑆

𝑠𝑠=𝐼𝐼

⇔ Minimize, F2 = −�𝑀𝑀𝑅𝑅𝑖𝑖𝑠𝑠
𝑗𝑗𝑠𝑠

𝑆𝑆

𝑠𝑠=𝐼𝐼

Maximize, F3 = �𝑃𝑃𝐹𝐹𝑖𝑖𝑠𝑠
𝑗𝑗𝑠𝑠

𝑆𝑆

𝑠𝑠=𝐼𝐼

⇔ Minimize, F3 = −�𝑃𝑃𝐹𝐹𝑖𝑖𝑠𝑠
𝑗𝑗𝑠𝑠

𝑆𝑆

𝑠𝑠=𝐼𝐼

Maximize, F4 = �𝑅𝑅𝑖𝑖𝑠𝑠
𝑗𝑗𝑠𝑠

𝑆𝑆

𝑠𝑠=𝐼𝐼

⇔ Minimize, F4 = −�𝑅𝑅𝑖𝑖𝑠𝑠
𝑗𝑗𝑠𝑠

𝑆𝑆

𝑠𝑠=𝐼𝐼 ⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 (6) 

𝑃𝑃𝐹𝐹𝑖𝑖
𝑗𝑗 = ���𝛷𝛷𝑖𝑖,𝑜𝑜

𝑗𝑗
𝑂𝑂

𝑜𝑜=1

� − 1�

𝜓𝜓

 (4) 
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Since, the present work has considered the performance and optimization of four objectives as 
mentioned in Eq. 6 hence, the formulated problem is a multi-objective optimization problem 
(MOOP) with conflicting objectives, where Operating cost has to be minimized and other three 
objectives have to be maximized. For a MOOP, it is impossible to have a single particular solution 
which concurrently optimizes all objectives. Therefore, NSGA-II is used for finding the non-domi-
nated solutions. Most of the MOOPs use concept of domination where two solutions are selected 
for comparison on the basis of whether one solution dominates other solution or not [12]. The 
common representation of a MOOP consists of a certain objectives and several equality and ine-
quality constraints which are defined in Eqs. 7 and 8: 

𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑖𝑖(𝑥𝑥)) = [𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥), . . . ,𝑓𝑓𝑛𝑛(𝑥𝑥)], (7) 

Subjected to: �
𝑔𝑔𝑗𝑗(𝑥𝑥) ≥ 0 ,
ℎ𝑘𝑘(𝑥𝑥) = 0 ,

𝑗𝑗 = 1,2, . . . ,𝑚𝑚
𝑘𝑘 = 1,2, . . . ,𝑛𝑛� (8) 

𝑥𝑥 is the decision variable vector that satisfy 𝑚𝑚 inequality constraints and ℎ equality constraints 
representing a feasible solution, 𝑓𝑓𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ objective function to be minimized, and 𝑛𝑛 is the num-
ber of objective functions. 

6. Selection of optimal RMT configurations in SMTL 
A Serial Manufacturing Transfer Line (SMTL) following an operation sequence 2 → 5 → 7 → 15 → 
8 → 16 is considered (Fig. 2). Raw materials are processed at various stages from one stage to the 
next stage performing variety of operations at the stages. A SMTL permits paralleling of identical 
machines where each process is consigned to a stage as per the precedence constraint of an oper-
ation sequence. After assigning an operation to each stage, a suitable machine type and its config-
uration to each stage is designated for performing that operation. Various sets of viable alternative 
RMT configurations 𝑀𝑀𝑀𝑀𝑝𝑝 are logged at each stage, performing 𝑜𝑜𝑡𝑡ℎoperation at the corresponding 
stages. Each feasible alternative 𝑀𝑀𝐶𝐶𝑖𝑖

𝑗𝑗  has two characteristic parameters, i.e., machine number ‘𝑖𝑖’ 
and its configuration number ‘𝑗𝑗’ from the respective set of its RMT configurations 𝑀𝑀𝑐𝑐. Each config-
uration is built with some primary modules as well as secondary auxiliary modules. Generally, the 
basic modules within a machine remains same while the auxiliary modules are changed while 
switching from one RMT configuration to the other as presented in the Table 5. Each configuration 
has its configuration cost and its own capacity to perform variety of operations at prescribed ca-
pacity which is termed as the Process feasibility of a RMT configuration as well as Reliability that 
is being mentioned in Table 6 and Table 7, respectively. 

Eq. 6 represents four performance parameters, taken into consideration for present work ap-
plied to a SMTL. The optimal RMT configuration assignment is tackled by NSGA-II, taking cost, 
reconfigurability, process feasibility and reliability as the objective functions of the MOOP. 
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Fig. 2 RMT configuration assignment to the stages in a SMTL 
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Table 5 RMT configurations, process feasibility and cost of RMT configuration 
RMT RMT configurations Operations performed Operation cost (in SAR (x103)) 

M1 
𝑀𝑀𝐶𝐶11 {4,8,12,16} 85 
𝑀𝑀𝐶𝐶12 {5,18,9} 132 
𝑀𝑀𝐶𝐶13 {7,3,16} 89 
𝑀𝑀𝐶𝐶14 {19,10} 145 

M2 

𝑀𝑀𝐶𝐶21 {12,1,6,20} 133 
𝑀𝑀𝐶𝐶22 {15,2,13} 121 
𝑀𝑀𝐶𝐶23 {3,17,8,11} 200 
𝑀𝑀𝐶𝐶24 {2,7,5,14} 158 
𝑀𝑀𝐶𝐶25 {4,18,13,20} 175 

M3 𝑀𝑀𝐶𝐶31 {2,12,9,17} 140 
𝑀𝑀𝐶𝐶32 {8,1,4,15,11,19,17} 252 

M4 𝑀𝑀𝐶𝐶41 {10,6,18} 192 
𝑀𝑀𝐶𝐶42 {17,1,20,12} 202 
𝑀𝑀𝐶𝐶43 {13,2,8,4,19,16} 188 

M5 
𝑀𝑀𝐶𝐶51 {14,1,11,7,18} 173 
𝑀𝑀𝐶𝐶52 {5,3,17,20,10} 153 
𝑀𝑀𝐶𝐶53 {9,4,15} 216 
𝑀𝑀𝐶𝐶54 {14,1,7,6,19,16} 180 

Table 6 Capacity (parts/h) RMT configurations for performing operations 

o Capacity (in parts/h) 
𝑀𝑀𝐶𝐶11 𝑀𝑀𝐶𝐶12 𝑀𝑀𝐶𝐶13 𝑀𝑀𝐶𝐶14 𝑀𝑀𝐶𝐶21 𝑀𝑀𝐶𝐶22 𝑀𝑀𝐶𝐶23 𝑀𝑀𝐶𝐶24 𝑀𝑀𝐶𝐶25 𝑀𝑀𝐶𝐶31 𝑀𝑀𝐶𝐶32 𝑀𝑀𝐶𝐶41 𝑀𝑀𝐶𝐶42 𝑀𝑀𝐶𝐶43 𝑀𝑀𝐶𝐶51 𝑀𝑀𝐶𝐶52 𝑀𝑀𝐶𝐶53 𝑀𝑀𝐶𝐶54 

1 - - - - 20 - - -  - 12 - 22 - 25 - - 13 
2 - - - - - 24 - 25 - 15 - - - 17 - - - - 
3   24  - - 17 - - - - - - - - 14 - - 
4 18 - - - - - - - 16 - 19 - - 21 - - 17 - 
5 - 20 - - - - - 19 - - - - - - - 25 - - 
6     16 - - - - - - 16 - - - - - 27 
7 - - 18 - - - - 20 - - - - - - 18 - - 12 
8 16 - - - - - 28 - - - 29 - - 24 - - - - 
9 - 12 - - - - - - - 23 - - - - - - 10 - 
10 - - - 18 - - - - - - - 18 - - - 22 - - 
11 - - - - - - 21 - - - 22 - - - 16 - - - 
12 10 - - - 22 - - - - 18 - - 24 - - - - - 
13 - - - - - 19 - - - - - - - 16 - - - - 
14 - - - - - - - 16 - - - - - - 10 - - 18 
15 - - - - - 20 - - - - 17 - - - - - 14 - 
16 15 - 22 - - - - - - - - - - 26 - - - 21 
17 - - - - - - 30 - - 20 24 - 19 - - 19 - - 
18 - 20 - - - - - - 14 - - 22 - - 28 - - - 
19 - - - 23 - - - 23  - 24 23 - - - - - 15 
20 - - - - 26 - - - 23 - - - 15 - - 30 - - 

Table 7 Reliability of RMT configuration for performing operations 

o 
Reliability (× 10-2) 
𝑀𝑀𝐶𝐶11 𝑀𝑀𝐶𝐶12 𝑀𝑀𝐶𝐶13 𝑀𝑀𝐶𝐶14 𝑀𝑀𝐶𝐶21 𝑀𝑀𝐶𝐶22 𝑀𝑀𝐶𝐶23 𝑀𝑀𝐶𝐶24 𝑀𝑀𝐶𝐶25 𝑀𝑀𝐶𝐶31 𝑀𝑀𝐶𝐶32 𝑀𝑀𝐶𝐶41 𝑀𝑀𝐶𝐶42 𝑀𝑀𝐶𝐶43 𝑀𝑀𝐶𝐶51 𝑀𝑀𝐶𝐶52 𝑀𝑀𝐶𝐶53 𝑀𝑀𝐶𝐶54 

1 - - - - 97 - - - - - 91 - 94 - - 94 - 95 
2 - - - - - 95 - 75 - 98 - - - 97 - - - - 
3   80  - - 93 - - - - - - - - 96 - - 
4 88 - - - - - - - 96 - 87 - - 94 - - 97 - 
5 - 80 - - - - - 98 - - - - - - - 85 - - 
6 - - - - 84 - - - - - - 93 - - - - - 96 
7 - - 98 - - - - 72 - - - - - - 88 - - 82 
8 76 - - - - - 98 - - - 79 - - 84 - - - - 
9 - 88 - - - - - - - 92 - - - - - - 94 - 
10 - - - 97 - - - - - - - 88 - - - 96 - - 
11 - - - - - - 95 - - - 97 - - - 96 - - - 
12 95 - - - 96 - - - - 94 - - 96 - - - - - 
13 - - - - - 88 - - - - - - - 93 - - - - 
14 - - - - - - - 88 - - - - - - 86 - - 97 
15 - - - - - 72 - - - - 87 - - - - - 84 - 
16 95 - 92 - - - - - - - - - - 86 - - - 75 
17 - - - - - - 95 - - 96 87 - 95 - - 95 - - 
18 93 - - - - - - - 86 - - 94 - - 86 - - - 
19 - - - 91 - - - 91 - - 81 97 - - - - - 94 
20 - - - - 97 - - - 95 - - - 89 - - 93 - - 
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6.1 Machine feasibility 

The Fig. 2 shows a SMTL where allocation of RMT configurations (𝑀𝑀𝐶𝐶𝑖𝑖
𝑗𝑗) is to be done at several 

stages by chromosome encoding and decoding technique. A random gene value in the range [0.01 
1.00] is assigned to each stage forming a set of gene values called as chromosome. Since, it has 
already been established that Real Encoded chromosome (REC) are superior to Binary Encoded 
chromosome (BEC) for optimization problems as established in previous works [42], therefore, 
REC along with NSGA II has been implemented in the present research for finding the non-domi-
nated solutions of the proposed optimal machine allocation problem. The length of the chromo-
some is equal to the number production stages, and on each stage an 𝑜𝑜𝑡𝑡ℎ operation has been per-
formed following an operation precedence constraint. At each stage, the gene values are multi-
plied to the number of respective alternative feasible RMT configurations (𝛬𝛬𝑓𝑓𝑜𝑜) and the rational 
number is rounded off to the higher digit because the RMT configuration can’t be rational and thus 
it gives the suitable RMT configuration number from the set of alternative feasible RMT configu-
rations (𝛬𝛬𝑓𝑓𝑜𝑜) which can be traced from Fig. 2. Thus how, a chromosome representing various 
stages in a SMTL can be decoded into a solution vector of the assigned RMT configuration at vari-
ous stages of the SMTL. 

6.2 Problem illustration 
In this case study, a reconfigurable SMTL having six manufacturing stages with six different vari-
ety of operations are performed at each stage thereby, requiring allocation of the suitable RMT 
configuration at each stage. Chromosomes having six random gene values in the range [0.01 1.00] 
is generated for each stage. Each gene value corresponds to a stage performing a specific opera-
tion. Based upon this procedure the feasible RMT configurations are allocated at each stage for 
performing the desired operation on the respective stages. In order to allocate feasible and best 
optimal RMT configuration for each stage, number of alternative RMT configurations are evalu-
ated for each stage, following the defined operation sequence by fetching the necessary data from 
Fig. 2. Further, the gene values of respective stages are multiplied with their counterpart number 
of feasible alternative RMT configurations, the obtained value are rounded off to the higher digit 
which gives the feasible RMT configuration number at various stages in a SMTL. Then, the corre-
sponding feasible RMT configurations are allocated for each stage. 

The objective function values of operating cost (𝐶𝐶𝑂𝑂𝑖𝑖
𝑗𝑗), MRF (𝑀𝑀𝑅𝑅𝑖𝑖

𝑗𝑗), process feasibility (𝑃𝑃𝐹𝐹𝑖𝑖
𝑗𝑗) 

and reliability (RL) are evaluated at each stage for the corresponding allocated RMT configura-
tions by using Eqs. 1 to 5. Further, the obtained objective function values for all stages for a SMTL 
from S-I to S-VI are summed up and the MOOP criterion formulation is considered using Eq. 6. 

7. Results and discussion 
Following the process outlined in the previous sections, the DT-based MATLAB program using 
NSGA-II algorithm is run for 200 population size and 100 generation runs. The objective functions 
are sorted in a non-dominated manner to provide optimal solutions using the MOOP criteria spec-
ified in Eq. 6. Out of the large number of non-dominated solutions presented in Fig. 3(a)-(f), only 
few alternative solutions have been presented in Table 8 for different manufacturing scenarios. 
These solutions may aid production planners in crucial decision-making tasks by assisting in RMT 
configuration selection strategy through selecting the best suitable optimal solutions. However, 
the selection of only one optimal solution out of the 12 alternative solutions for each production 
stage can be made by the enterprise management as per the facility requirements and the con-
straints. The results presented in Table 8 depicts 12 alternative non-dominated solutions which 
represents the viable RMT configurations allocated to RMS manufacturing stages from stage S-I 
to S-VI. Moreover, the corresponding objective functions values are evaluated based on the MOOP 
criterion using the DT-based NSGA-II algorithm. 

The Viable RMT configurations required to be allocated to manufacturing stages can be under-
stood in this way, i.e., the first digit signifies the RMT number and another digit represent its re-
spective feasible RMT configuration. Furthermore, the best optimal objective function values that 
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have been evaluated reveals that Machine 5 in its 2nd configuration, i.e., 𝑀𝑀𝐶𝐶52 and Machine 2 in its 
4th configuration, i.e., 𝑀𝑀𝐶𝐶24 are the only two feasible optimal RMT configurations that are allocated 
to production stage S-II. Likewise, Machine 2 in its 2nd configuration, i.e., 𝑀𝑀𝐶𝐶22 and Machine 3 in 
its 2nd configuration, i.e., 𝑀𝑀𝐶𝐶32 are the two most likely feasible optimal RMT configurations that 
are allocated to production stage S-IV. As for the production stage S-V, 𝑀𝑀𝐶𝐶23 and 𝑀𝑀𝐶𝐶43 are the most 
likely allocated best suitable optimal RMT configurations on the SMTL. 
 

Table 8 Optimal configuration solutions obtained after 100 simulation runs 

 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 3 (a) Process feasibility vs MRF; (b) Process feasibility vs operating cost; (c) Reliability vs operating cost; 
         (d) Reliability vs MRF; (e) Reliability vs process feasibility; (f) MRF vs operating cost 

 
Moreover, the relationship variation between objective function values are presented in Fig. 

3a-f. The process feasibility found to have inverse proportional relationship with rest of all the 
parameters, i.e., the process feasibility drops with the rise of another parameter or vice-versa as 
shown in Fig. 3(a)-(b) and Fig. 3(e). The objectives MRF and Operating cost have direct propor-
tional relationship, Fig. 3(f), and thus both parameters increase or decrease altogether. Reliability 
have Bath-tub curve relationship with operating cost and Machine Reconfiguration factor, Fig. 
3(c)-(d). 

In relation to the present work, another study [43] presented a simulation-based MOOP tech-
nique for optimizing the configuration of a Multi-Part Production Flow Line by applying NSGA-II 
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algorithm for only two factors, i.e., (1) assigning tasks to workstations and (2) allocating buffers 
to achieve maximum throughput (THP) while minimizing the total buffer capacity required. Non-
dominated solutions so obtained with a THP higher/lower than 60 in numbers were presented by 
different colours. Further, a bi-objective minimization problem in RMS [44] obtained the pareto 
front using the proposed multi-objective simulated annealing algorithm. The effectiveness of the 
proposed algorithm was compared with NSGA-II that was reported outperformed in several as-
pects. However, this work considered a bi-objective optimization problem with no conflicting ob-
jectives and moreover, the results revealed lowly crowded solutions. Kurniadi et al. [30] consid-
ered an RMS problem and compared a conventional simulation program with a DT-based simula-
tion program, results showed that total Reconfiguration Planning cost of RMS using Visual Com-
ponents was found lower while using Plant Simulation software. Xu et al. [35] developed a selec-
tive maintenance model. In order to assess the efficacy of the devised strategy, the NSGA-II and 
NSGA-III algorithms were employed to address two maintenance decision-making models. The 
first model aimed to minimize maintenance and maximize the probability of the system complet-
ing the next task, while the second model included an objective of minimizing system downtime. 
The findings affirmed that the three-objective decision-making model, which considered minimiz-
ing downtime, effectively reduced system downtime. From the past studies, it can be concluded 
that NSGA-II is an effective algorithm that can be used in solving the MOOP related to DT-based 
works in RMS. 

8. Conclusion and future work 
This case study addressed a DT-based reconfiguration planning problem for RMS, particularly 
with regards to configuration selection of machines needed to meet future demands. The research 
demonstrated how DTs may be used in the configuration planning of RMTs used in RMS. RMT 
configuration selection is among the most crucial factors required for the successful and efficient 
planning of RMS. Every time new demands are raised to the system, machine reconfigurations are 
quite likely to occur. Thus, one of the most crucial factors in achieving a successful and efficient 
RMS is the RMT configuration selection. The integration of DT technology into RMS make real-
world applications conceivable, and by integrating all the operators, physical equipment, and data, 
the system will be able to function more efficiently and logically. A novel DT-based MOOP tech-
nique is proposed for RMS which is based on four objective functions—Operation cost, MRF, pro-
cess feasibility, and machine reliability. The best optimum configuration for the six-stage recon-
figurable SPFL has been evaluated. To create a virtual environment, a DT-based optimization cum 
simulation model is developed in order to evaluate the non-dominated solutions for the optimal 
RMT configuration selection problem for RMS. The authors developed a MATLAB simulation pro-
gram using NSGA-II algorithm. This research will aid production planners in crucial decision-mak-
ing tasks for DT-based RMS production planning by assisting in RMT configuration selection strat-
egy through evaluating the best suitable optimal solutions. As for limitations of the study, this 
work is only limited for the case of single reconfigurable manufacturing transfer line. The com-
plexity of the problem may increase with the increase in (1) The number of parallel reconfigurable 
manufacturing transfer lines and (2) Number of conflicting objectives considered in the Multi-
objective optimization problem. Hence, this work can be extended for the DT-based integrated 
production planning of (1) multiple reconfigurable flow lines (2) considering more multiple con-
flicting objectives and (3) solving the MOOP with the help of more powerful optimization algo-
rithms. 
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