

137

Advances in Production Engineering & Management ISSN 1854-6250
Volume 18 | Number 2 | June 2023 | pp 137–151 Journal home: apem-journal.org
https://doi.org/10.14743/apem2023.2.462 Original scientific paper

Real-time scheduling for dynamic workshops with random
new job insertions by using deep reinforcement learning
Sun, Z.Y.a,b, Han, W.M.a,*, Gao, L.L.a
aSchool of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, P.R. China
bSchool of Software, Pingdingshan University, Pingdingshan, Henan, P.R. China

A B S T R A C T A R T I C L E I N F O
Dynamic real-time workshop scheduling on job arrival is critical for effective
production. This study proposed a dynamic shop scheduling method integrat-
ing deep reinforcement learning and convolutional neural network (CNN). In
this method, the spatial pyramid pooling layer was added to the CNN to
achieve effective dynamic scheduling. A five-channel, two-dimensional matrix
that expressed the state characteristics of the production system was used to
capture the state of the real-time production of the workshop. Adaptive
scheduling was achieved by using a reward function that corresponds to the
minimum total tardiness, and the common production dispatching rules were
used as the action space. The experimental results revealed that the proposed
algorithm achieved superior optimization capabilities with lower time cost
than that of the genetic algorithm and could adaptively select appropriate
dispatching rules based on the state features of the production system.

 Keywords:
Real-time scheduling;
Machine learning;
Deep reinforcement learning
(DRL);
Spatial pyramid pooling layer;
Artificial neural networks (ANN);
Convolutional neural networks
(CNN)

*Corresponding author:
wlmh63@163.com
(Han, W.M.)

Article history:
Received 7 December 2022
Revised 6 June 2023
Accepted 25 June 2023

Content from this work may be used under the terms of
the Creative Commons Attribution 4.0 International
Licence (CC BY 4.0). Any further distribution of this work
must maintain attribution to the author(s) and the title of
the work, journal citation and DOI.

1. Introduction
With the rapid development of information technology, China is gradually entering intelligent
industry 4.0 [1]. With changing market demand, multiple-product small-batch order-type pro-
duction has become prevalent in the manufacturing industry. Therefore, achieving sustainable
and efficient workshop production under complex production conditions, responding quickly to
market changes, and satisfying the diverse needs of customers are critical.

Although job shop scheduling problems (JSSP) [2, 3] primarily address static scheduling is-
sues, many real-time disruption factors, such as equipment failure, dynamic order arrival, emer-
gency order insertion, in the production process are ignored [4, 5]. The insertion of a new order
can drastically change the number and mode of processing tasks. Error accumulation renders
existing production scheduling schemes ineffective, which results in the failure of the production
planning system [6]. Therefore, dynamic real-time production scheduling on the insertion of new

Sun, Han, Gao

138 Advances in Production Engineering & Management 18(2) 2023

jobs is crucial for timely response to disruption events and ensuring production requirements
are satisfied.

Current dynamic scheduling methods under order disturbance include heuristic algorithms
[7-11] and dispatching rules [12]. Wang et al. [13] proposed an improved particle swarm opti-
mization (PSO) algorithm to solve the dynamic job shop scheduling problem. Caldeira et al. [14]
solved the flexible job shop scheduling problem on the arrival of a new job by using the im-
proved backtracking search optimization algorithm that minimized makespan, energy consump-
tion, and system stability. Ghaleb et al. [15] proposed three heuristic algorithms to address the
real-time scheduling problem when new jobs are added and equipment fails. Tang et al. [16]
considered minimum energy consumption and makespan as optimization objectives and pro-
posed an improved PSO algorithm to solve the dynamic scheduling problem of flexible flow
shops under new job arrival and equipment failure. In most heuristic algorithms, the dynamic
scheduling problem is converted into a multi-stage static problem. Short-sightedness appears as
the disturbance scale increases. The dispatching rules method can immediately respond to dy-
namic disturbance events and exhibits short computing time and high solution efficiency.

Hundreds of dispatching rules have been proposed for shop scheduling [17, 18]. Zhang et al.
[19] proposed a job shop dispatching rule selection system based on semantics to achieve adap-
tive selection of dispatching rules by scheduling objectives. To reduce the time of job completion
and complexity of process design in the conventional dispatching rule design process, Zhang et
al. [20] proposed an improved genetic programming algorithm that evolves effective dispatching
rules automatically. Ferreira et al. [21] combined machine learning with the problem domain
reasoning to generate effective dispatching rules. Although dispatching rules can respond to
dynamic disturbance events in real time and exhibit short computing time and high solving effi-
ciency, these methods are prone to local optimum and cannot be adjusted adaptively to respond
to various production states.

Reinforcement learning (RL) [22] has been widely used in production scheduling because of
its excellent optimization ability and high computational speed. The continuous interaction be-
tween agent and environment maximizes cumulative rewards [23]. Dispatching rules can be
dynamically and flexibly selected based on the real-time production status, which is suitable for
the dynamic production scheduling problems. Wang et al. [24] used Q-learning to train a single
machine agent and realized the dynamic selection of the three basic dispatching rules with the
minimum average tardiness as the optimization objective. Chen et al. [25] proposed a rule-
driven method for generating high-quality composite dispatching rules for the multi-objective
dynamic job shop scheduling problem by using the Q-learning algorithm. Qu et al. [26] proposed
a Q-learning algorithm that solves the dynamic job shop scheduling problem under random job
arrival and equipment failure by combining the neighborhood search algorithm with the Q-
factor. Although the conventional reinforcement learning algorithm has achieved excellent re-
sults in solving dynamic production scheduling problems, the algorithm is limited to situations
in which the dimension and scale of the system state space are small and discrete. In the deep
reinforcement learning (DRL) [27] algorithm, the perception ability of deep learning is effective-
ly combined with the decision-making ability of reinforcement learning. Thus, DRL can effective-
ly performs complex decision-making in the high-dimensional state space. Zhu et al. [28] pro-
posed a proximal policy optimization (PPO) algorithm to solve the flexible flow shop scheduling
problem by minimizing makespan. The PPO algorithm outperformed the conventional heuristic
algorithm in terms of the quality of the solution. Luo et al. [29] proposed a deep Q-network
(DQN) algorithm to solve the real-time workshop scheduling problem with dynamic job arrival
to minimize total tardiness and achieved excellent results in the randomly generated data exper-
iment. Yang et al. [30] used the A2C algorithm to train an intelligent model for the permutation
flow job shop scheduling problem. This model outperformed the conventional heuristic algo-
rithm in terms of the solving time and solution quality. Li et al. [31] proposed a hybrid DQN
(HDQN) algorithm to solve the dynamic flexible job shop scheduling problem under transporta-
tion resource constraints. In most studies, the production system state is expressed through
numerical features, which requires special manual design.

Real-time scheduling for dynamic workshops with random new job insertions by using deep reinforcement learning

Advances in Production Engineering & Management 18(2) 2023 139

The CNN is used for the feature extraction of system state features expressed by multi-
channel images to effectively reduce manual design difficulty and exhibits excellent generality.
However, because of the limitation of CNN feature extraction on the input size of training imag-
es, static scheduling is widely used. Liu et al. [32] designed three channels of two-dimensional
data matrices as system state features for job shop scheduling problems and solved these prob-
lems using the AC algorithm to achieve excellent results on benchmark examples. Han et al. [33]
combined the CNN and DRL to achieve dynamic job shop scheduling. Wang et al. [34] used the
PPO algorithm to solve the job shop scheduling problem outperform GA. Subsequently, random
fine-tuning was performed on some examples to test the generalization ability of the model.

This method is simple and produces excellent results by describing the state features of the
production system using multi-channel images. However, because of the structural characteris-
tics of the CNN, applying the method to dynamic variable data of various image sizes is difficult.
The static model can only process data of the same size, and it exhibits limited generalization.
Multi-channel image system feature representation is yet to be used for dynamic scheduling.
Therefore, in this study, an SPP layer [35] was added to the last layer of the CNN so that the neu-
ral network can handle any size of the input image information and achieve dynamic scheduling
under the state image expression mode of the production system.

The contributions of this paper are as follows: (1) This study is the first to use SPP with neu-
ral networks to solve the dynamic scheduling problem to allow the system model to handle the
input state data of any scale; (2) The state feature expression mode of the production system
was improved. The limitations of the conventional three-channel image design was overcome,
and the system state feature was represented by five-channel data, considering both the global
and local features of system processing state; (3) To assess the effect of the dispatching rules
selected at each decision point on the overall scheduling objective, a novel reward function tar-
geting total tardiness was developed; (4) Comprehensive parameter sensitivity experiments and
algorithm result comparisons were performed. The effectiveness of the calculation speed and
optimization ability of the proposed scheme was demonstrated. The method achieved excellent
generalization results.

2. Overall scheduling framework
A dueling double DQN (DDDQN) algorithm framework was proposed to achieve dynamic job
shop real-time scheduling with constant random new order insertion. The neural network of the
DDDQN algorithm consists of a Q-network and a target network. Each network exhibits the same
structure and is composed of the convolution layer and a full connection layer. To address the
problem of the dynamic image size change caused by the dynamic order arrival, an SPP layer
was added between the CNN convolution layer and full connection layer to ensure consistent
output size of the CNN convolution layer. Thus, the scheduling problem was transformed into a
multi-stage decision-making process by designing a state feature, action space, and reward func-
tion. The agent is trained through interaction with the environment, and the trained agent is
applied to solve the online problem. The framework includes two parts, namely offline training
and online application (Fig. 1).

The scheduling environment comprises equipment and order in the production system,
which is used for the interaction with the agent and providing the current production system
status information. The agent outputs the most appropriate dispatching rule and selects the
highest priority operation for processing. The production system then enters the next state.

In the offline training phase, intermediate data generated in the learning process is stored in
the replay memory, and a minibatch number of sample data are randomly sampled for training.
The Q-network and the target network calculate the Q and target values of the system state, re-
spectively. Q-network parameters are updated by the loss function calculated by the target value
and Q value. The parameters of the target network are copied from the Q-network after a certain
number of steps. The optimal action is selected according to the result of the Q value.

Although offline scheduling requires considerable time to train an agent, when an agent
learns good policy, it can be widely used in online actual data scheduling to obtain optimal

Sun, Han, Gao

140 Advances in Production Engineering & Management 18(2) 2023

scheduling results rapidly. The execution process only requires the Q-network to calculate the
optimal Q value without updating various network parameters, calculating the reward value, or
storing sample data and other operations.

Actual production data

Dynamic arrival of job

S
P
P

Q-networkQ-network

Target networkTarget network

DDDQN

Offline
Training

Online
Scheduli

ng

TD-error

Adam Q s ω（ ，a; ）

iy

ActionAction

Minibatch of transitions

Update
parameters

48 49 27

6 16 1

10 49 22

0 0 0

0 5 0

0 0 0

0 0 43

20 0 0

0 0 0

0 46 0

13 0 0

0 0 0

0 22 0

0 0 0

0 33 0

Queue Q2 Machine
m2

Queue Q3 Machine
m3

Queue Q1 Machine
m1

Scheduling Environment

sta
te

Replay
memory

D
︙

︙︙

0 0 0 1, , ,s a r s〈 〉

1 1 0 2, , ,s a r s〈 〉

1, , ,t t t ts a r s +〈 〉

Action

Reward

Start

Decision pointCurrent production
state

End

Yes

No

Select action at，
Obverse the next

state

All operations are
finished

S
P
P

Fig. 1 Scheduling framework with the DDDQN

3. DRL for scheduling
3.1 Problem formulation

The JSPP with new order insertions can be described as follows: a processing system has N or-
ders that are processed on M machines. Each order has 𝑛𝑛𝑗𝑗 operations. The objective of produc-
tion scheduling is to generate an optimal scheduling scheme based on the scheduling objectives
and satisfy all constraints. However, when the new order arrives, the operations that were not
started in the original scheduling scheme should be combined with operations in the new order
for rescheduling. When creating the new scheduling scheme, factors such as the starting pro-
cessing times and the number of the remaining operations of each order, should be considered.
The scheduling problem should satisfy the following assumptions: (1) each order has a sequence
constraint on the operations, that is, the next operation can only be processed after the previous
operation is completed; (2) each operation of each order can only be processed by one machine;
(3) each machine can only perform one operation at the same time; (4) when the new order ar-
rives, the ongoing operation cannot be interrupted; (5) the processing time of each operation on
the corresponding machine is known.

3.2 DQN principle

The DQN algorithm is used to solve the problem. The DQN is the most classical algorithms of
DRL. Based on Q-learning, the deep neural network is used to represent value function 𝑓𝑓. The
input of the neural network is the current state s, and the output is the state value func-

Real-time scheduling for dynamic workshops with random new job insertions by using deep reinforcement learning

Advances in Production Engineering & Management 18(2) 2023 141

tion Q(s, a). In the DQN, empirical data are used to train the neural network, which is prone to
instability and convergence difficulties. To solve these problems, replay memory and target
network are used in the DQN. Experience replay stores the intermediate data in a fixed-size
storage experience pool in the form of 〈𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1〉, which is generated in the learning process
of Q-learning. The system randomly samples a certain number of small-batch samples from the
replay memory for training. This random sampling not only breaks the correlation of training
samples but also ensures an independent and homogeneous distribution of training samples.
Target network reconstructs a network with the same structure as the original network. The
original network is the Q-network, and the generated network is the target network. During
training, only Q-network parameters are updated, and the parameters of the target network
remain unchanged temporarily. After reaching a certain number of update steps C, the parame-
ters of the Q-network are copied to the target network so that the value of the target network
does not change in a certain update step to ensure system stability. The target value is calculated
as follows:

𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷 ≡ 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎

𝑄𝑄�(𝑠𝑠𝑡𝑡+1,𝑎𝑎;𝜔𝜔𝑡𝑡
−) (1)

The neural network calculates TD errors through the target network and Q-network to up-
date parameters.

In the standard DQN algorithm, the action with the largest Q value is selected, which results
in an overestimation of the Q value. Therefore, the Double DQN (DDQN) algorithm is used to
separate the action selected from the calculation of the Q value and two value functions are used.
The target value of the DDQN is calculated as follows:

𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≡ 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑄𝑄�(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑎𝑎𝑎𝑎max
𝑎𝑎

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎;𝜔𝜔𝑡𝑡),𝜔𝜔𝑡𝑡
−) (2)

By using various value functions to decouple the target action and Q value, the DDQN algo-
rithm mitigates the overestimation of Q values and achieves excellent stability.

In the DQN, the network outputs the Q value of action, but in practice, the Q value is associat-
ed with the action and state. Therefore, Dueling DQN improves the network structure of the DQN
by adding state value function V(s,ω, a) related to the system state and the advantage function
A(s, a,ω,β) related to the action before the network output layer and synthesizing these two
functions to generate the action function in the final output layer. Thus, we have the following
expression:

𝑄𝑄(𝑠𝑠,𝑎𝑎,𝜔𝜔,𝛼𝛼,𝛽𝛽) = 𝑉𝑉(𝑠𝑠;𝜔𝜔,𝛼𝛼) + (𝐴𝐴(𝑠𝑠,𝑎𝑎,𝜔𝜔,𝛽𝛽) −
1

|𝒜𝒜| �𝐴𝐴(𝑠𝑠,𝑎𝑎𝑡𝑡+1,𝜔𝜔,𝛽𝛽)
𝑎𝑎𝑡𝑡+1

) (3)

where ω is a parameter of the common part, α is a parameter of the value function, and β is a
parameter of the advantage function.

In this study, dueling DQN and double DQN are used to solve the dynamic production sched-
uling problem.

3.3 CNN with the SPP layer

The insertion of new orders dynamically changes the size of multi-channel images expressed by
state features. However, the full connection layer in the conventional CNN requires an input of
fixed size. An SPP layer was added between the last convolutional layer and the first full connec-
tion layer in the CNN to divide the feature graph obtained after convolution into a fixed number
of grids of various sizes. The grid is then pooled with mean values. Thus, the feature graph con-
volved with any size can be changed into the output of a fixed size so that the graph has the same
dimension of feature vector with the following full connection layer. Thus, image convolution
with any image size input can achieved as follows (Fig. 2).

Sun, Han, Gao

142 Advances in Production Engineering & Management 18(2) 2023

Fixed
length
output4x80

2x80

1x80

spatial
pyramid
pooling

layer

full
connection

layer

Convolution
 Layers

Fig. 2 SPP principle

3.4 Scheduling problem transformation
The problem transformation between scheduling and algorithm design is critical for applying
DRL to JSPP and involves three aspects, namely state feature, action space, and reward function
design.

State features expression
To improve the state changes of the production system, the following rules should be followed
for describing the state features:

• State features should be able to reflect the features and changes of the production system,
and both global and local state features should be considered.

• State features at each moment are represented by a universal feature set.
• State features should be represented numerically for easy calculation and standardization

for uniform scaling of various features.
This study optimized and upgraded the production system state features based on literature

[33]. The limitation of three channels in the conventional system state feature expression was
overcome. Five channels were designed for characterization. The first channel is represented by
the two-dimensional matrix of the order to be processed. The rows of the matrix represent the
order, and the columns represent the operation. The initial value is the processing time of the
corresponding operation in the order. The value of the corresponding position becomes zero on
the completion of an operation. The second channel is represented by the two-dimensional ma-
trix of the completed operations of the order. The initial value is zero. The value of the corre-
sponding position is the processing time on completion of an operation. The third channel is the
remaining processing time of the processing operation. The fourth channel is the processing
time of each operation in the queue to be processed. The fifth channel is the waiting time of each
operation in the waiting queue. The first and second channels express the global state feature,
whereas the third, fourth, and fifth channels express the local state feature. All channel data are
linearly normalized to the maximum value.

Definition of ACTIONS
The action selection involves selecting the most suitable operation waiting for processing, and
the production scheduling rule can select an appropriate process at each scheduling decision
point. In this article, 16 commonly used production dispatching rules are selected as the action
space in DRL. The details are as follows: the select the job with the shortest processing time
(SPT), select the job with the longest processing time (LPT), select the job with the longest re-
maining processing time (LWKR), select the job with the shortest remaining processing time
(MWKR), select the job with the shortest processing time of subsequent operation (SSO), select

Real-time scheduling for dynamic workshops with random new job insertions by using deep reinforcement learning

Advances in Production Engineering & Management 18(2) 2023 143

the job with the longest processing time of subsequent operation (LSO), select the job with the
shortest remaining processing time in addition to the current operation (SRM), select the job
with the longest remaining processing time in addition to the current operation (LRM), select
the job that arrives first (FIFO), select the job with the earliest due date, select the job with the
minimum sum of processing time of the current and subsequent operation (SPT+SSO), select the
job with the maximum sum of processing time of the current and subsequent operation
(LPT+LSO), select the job with the minimum ratio of current processing time to the total work-
ing time (SPT/TWK), select the job with the maximum ratio of current processing time to the
total working time (LPT/TWK), select the job with the minimum product of the current pro-
cessing time and total working time (SPT *TWK), select the job with the maximum product of
current processing time and total working time (LPT * TWK). The diversity of dispatching rules
is increased so that the agent can adaptively select dispatching rules.

Reward FUNCTION
The reward function is key to DRL and directly affects the direction of learning and is closely
related to optimization. The reward function should be designed as follows: (1) the reward func-
tion should accurately express the immediate reward of the current action. (2) Cumulative re-
ward should be closely related to the scheduling objective. (3) Reward function should be uni-
versal and can be used for problems of various scales. Because the overall scheduling objective is
to minimize total tardiness, the following reward function should be designed:

𝑟𝑟𝑘𝑘 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘−1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 = �𝛿𝛿𝑗𝑗(𝜏𝜏)
𝑛𝑛

𝑗𝑗=1

 (4)

where 𝛿𝛿𝑗𝑗(𝜏𝜏) represents the tardiness of job J at the current system state, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 is the total tardi-
ness of all the jobs in the current system. For the job without tardiness, the tardiness is zero.
Here, 𝑟𝑟𝑘𝑘 represents the reward received at the decision-making time 𝑡𝑡𝑘𝑘−1 after executing the
action, then the system arrives at decision-making time 𝑡𝑡𝑘𝑘. The derivation process of cumulative
reward function R is as follows:

R = �𝑟𝑟𝑘𝑘 = �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘−1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘

𝐾𝐾

𝑘𝑘=1

𝐾𝐾

𝑘𝑘=1

= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇0 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2

+⋯+ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐾𝐾−1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐾𝐾

= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇0−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐾𝐾 = −𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐾𝐾

(5)

The derivation process of the cumulative reward formula reveals that it is inversely propor-
tional to the total tardiness, that is, the smaller the total tardiness is, the larger the cumulative
reward value is, which is consistent with the scheduling objective.

Training based on DRL
The scheduling process is a semi-Markov decision process. When any machine completes an
operation or a new order arrives as a decision time point, the agent adaptively selects appropri-
ate dispatching rules, and the highest priority operation is selected for processing. Subsequently,
the machine enters the next state after receiving rewards. The cycle continues until all opera-
tions are finished, that is, a scheduling scheme is obtained. The process is as follows:

Algorithm 1 DDDQN-based training method
1: Initialize replay memory D, minibatch k，learning rate α，target network parameters update every C

steps.
2: Initialize Q-network with random weights ω
3: Initialize target network 𝑄𝑄� with weights 𝜔𝜔− = 𝜔𝜔
4: For episode = 1 : M do
5: Reset the system scheduling status to 𝑠𝑠0 and clear schedule results.
6: while True：(t is the decision time point at which an operation is completed or a new order arrives, the

Boolean variable done terminates the loop when all operations are complete)

Sun, Han, Gao

144 Advances in Production Engineering & Management 18(2) 2023

7: Select action 𝑎𝑎𝑡𝑡 based on ε-greedy strategy
8: Execute action 𝑎𝑎𝑡𝑡, calculate the immediate reward 𝑟𝑟𝑡𝑡，observe the next state 𝑠𝑠𝑡𝑡+1
9: Store transition〈𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡,𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉 in D
10: Random sampling minibatch of transitions 〈𝑠𝑠𝑖𝑖 ,𝑎𝑎𝑖𝑖,𝑖𝑖, 𝑠𝑠𝑖𝑖+1,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉 from D
11: 𝑦𝑦𝑖𝑖 = �

𝑟𝑟𝑖𝑖 if done = true
𝑟𝑟𝑖𝑖 + 𝛾𝛾𝑄𝑄�(𝑠𝑠𝑖𝑖+1, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑖𝑖+1, 𝑎𝑎;𝜔𝜔),𝜔𝜔−) otherwise

12: Compute TD-error(𝑦𝑦𝑖𝑖 − 𝑄𝑄(𝑠𝑠𝑖𝑖 ,𝑎𝑎;𝜔𝜔))2to update the parameters of Q-network
13: Every C steps update the parameters of the target network 𝑄𝑄� :𝜔𝜔− = 𝜔𝜔
14: end while
15: end for

The training process is divided into inner and outer loops, the outer loop represents the times
of training. After M loops of cyclic training, the agent gradually reaches the ability to adaptively
select the optimal dispatching rules at various decision moments. The inner loop represents a
complete scheduling scheme generation process, starting from the first operation until all opera-
tions are finished, which is an episode, lines 5-14 describe the execution of the inner loop that
starts from the initial state of 𝑠𝑠0, at the decision moment t the agent select and execute the action
 𝑎𝑎𝑡𝑡 based on the ε-greedy strategy, the suitable operation is scheduled. The reward 𝑟𝑟𝑘𝑘 and the
next state 𝑠𝑠𝑡𝑡+1 are observed, the transition 〈𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡,𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1,𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜〉 is stored. Minibatch transitions
are randomly sampled from the replay memory for system training. A loss was calculated ac-
cording to lines 11 and 12, and gradient descent was used to update the parameters of Q-
network. The parameters of the target network were updated by the parameters of Q-network
according to the contents of 13 lines after every C step.

4. Numerical simulation
In numerical simulation, multiple groups of data were used to train the DDDQN. The optimal
training model is then saved, and the model is tested in the new test data of multiple groups of
various production scenarios. The data generation method proposed in a previous study [29] is
randomly generated, and the parameters are presented in Table 1.

According to the arrival time and number of new orders, the number of machines, and the
due date of orders, 81 groups of data of various production scenarios were randomly generated
for the test. Assuming that 30 orders exist at the beginning of each production scenario, the arri-
val time of new jobs follow Poisson distribution. Therefore, the time interval between two con-
secutive new jobs is subjected to exponential distribution. The due date tightness (DDT) repre-
sents the urgency of orders. The due date of order i can be calculated as 𝐷𝐷𝑖𝑖 = 𝐴𝐴𝑖𝑖 + (∑ 𝑡𝑡𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖
𝑗𝑗) ∙

𝐷𝐷𝐷𝐷𝐷𝐷. Here, 𝐴𝐴𝑖𝑖 is the arrival time of the order, 𝑛𝑛𝑖𝑖 is the number of operations in the order, 𝑡𝑡𝑖𝑖𝑖𝑖 is
the processing time of the j operation of the order. The smaller the DDT is, the more urgent the
order due date is.

Table 1 Parameter settings of various production scenarios
Parameter Value
Number of machines 5,10,15
Number of initial jobs 30
Number of new job insertions 10,30,50
Processing time of each operation Unif[0,50]
Due date tightness 1.0,1.5,2.0
Average value of exponential distribution
between two successive new job arrivals 25,50,100

4.1 Network structure and system parameter setting
The CNN structure of the DDDQN consists of four convolution layers and two full connection
layers. To solve the problem of variable image size, a SPP layer was added between the convolu-
tion layer and the full connection layer. From the first layer to the fourth layer for the convolu-
tion layers, the size of the convolution kernel was 6 × 6, 4 × 4, 3 × 3, 2 × 2, the step size was 2, 2,
2, 1, and the number of output channels was 20, 40, 60, and 80. Because each element in the
state feature image represents an operation, the pooling layer in the CNN results in incomplete

Real-time scheduling for dynamic workshops with random new job insertions by using deep reinforcement learning

Advances in Production Engineering & Management 18(2) 2023 145

scheduling information. Therefore, the pooling layer was not used. The full connection layer
consists of two branches of the full connection layer with 512 units. The two branches connect
the state value and the advantage value. Finally, the state and advantage values were combined
to obtain the final result output. The RELU activation function was used for every layer. The Ad-
am optimizer was used to update the parameters.

Parameter setting considerably affected DDDQN performance. Five groups of data were ran-
domly generated for the parameter sensitivity experiment under 10 new order insertions, 10
machines, 50 average time interval between new order arrival, and DDT tardiness coefficient of
1.5. The effects of the training batch, learning rate, replay memory buffer size, and target net-
work parameter updating frequency on algorithm performance were verified. Fig. 3 displays the
training effect under various parameter settings, the total number of training was set to 3000
episodes.

(a) (b)

(c) (d)

Fig. 3 Verification results of each hyperparameter: (a) Minibatch size; (b) Learning rate;
 (c) Replay memory buffer size (d) Target network updating frequency

Fig. 3(a) verifies the influence of the training batch on the algorithm. The figure reveals that
all parameters exhibits excellent stability. The performance with a batch size of 32 decreased
slightly. Fig. 3(b) displays the influence of various learning rates on the algorithm. The higher
the learning rate is, the more the training effect is unstable. When the learning rate is 0.001, the
algorithm does not even converge. Fig. 3(c) displays the influence of various replay memory
buffer sizes on the algorithm. As displayed in the figure, the larger the replay memory is, the
better the convergence of the algorithm is, and the replay memory with a capacity of 100000
exhibits superior stability. Fig. 3(d) displays the influence of the target network parameter up-
dating frequency on algorithm performance, and the parameters exhibit an effect under various
updating frequencies. According to the verification of various parameters, the final neural net-
work parameter settings are presented in Table 2.

Sun, Han, Gao

146 Advances in Production Engineering & Management 18(2) 2023

Table 2 Setting of neural network parameters
Parameters Values
Number of episodes 3000
Explore times steps 3000 · total operation number · 0.3
Epsilon 1 − (1 − 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 · min (1, currentiter/totalsteps))
Replay memory buffer size 100000
Learning rate 0.000001
Minibatch 256
Target network updating frequency 200
Discount factor 1.0

The ε-greedy action selection strategy was implemented according to the method mentioned
in a previous study [33]. To ensure the maximum cumulative rewards learned by the agent, the
discount factor is selected as 1.0, that is, the cumulative rewards are not discounted.

4.2 Comparison of various status features expression

To verify the validity of the state feature expression of the proposed five-channel images, the
influence of three state feature expression modes of three-channel images, four-channel images,
and five-channel images on the algorithm were compared. In three-channel images, the produc-
tion system state feature expression method in literature is adopted [33]. Five-channel images
were the proposed production system state feature expression method, and four-channel images
were separated from five-channel images to remove the waiting time channel of each operation
in the waiting queue.

Five groups of data were randomly generated for testing under the following production
configurations: the number of machines was 10, the average time interval between two consecu-
tive new order arrival was 50, DDT was 1.5, and the number of new order insertion were 10, 30,
and 50. The results are displayed in Fig. 4. The figure reveals that with the increase in the new
order insertion scale, the expression methods of three-channel and four-channel both fluctuated
considerably, whereas the proposed expression method exhibited excellent stability.

(a) (b)

(c)

 Fig. 4 Verification results of various state features: (a) 10 new job insertions; (b) 30 new job insertions;
 (c) 50 new order insertions

Real-time scheduling for dynamic workshops with random new job insertions by using deep reinforcement learning

Advances in Production Engineering & Management 18(2) 2023 147

4.3 Training process of the DDDQN

The DDDQN was used to train a model with certain generalization ability. The model was tested
with various test data. The model was trained according to the number of machine and the time
interval between the dynamic arrival of orders. Each model was trained for 3000 episodes. In
the training process, 12 groups of randomly generated data were used according to the number
of new orders of 10, 30, and 50 and the DDT of 1.0 and 2.0. Fig. 5 displays the model training
process with five machines and 100 times intervals.

(a) (b)

 Fig. 5 Model training process in five machines and 100 times intervals: (a) Average total tardiness during training;
 (b) Average reward during training

Figs. 5(a) and 5(b) display the change process of the total tardiness and reward during the
training process. The reward value gradually increases and becomes stable with the increase in
training episodes, whereas the total tardiness decreases. After 1000 episodes of training, the
model becomes stable, which indicates that the DDDQN has learned to adaptively select the ap-
propriate dispatching rules at the decision time. The curve trend of the average reward value is
similar to that of the average total tardiness, which indicates that the designed reward function
exhibited a high correlation with the optimization objective with the minimum total tardiness. A
small fluctuation was observed after the model convergence. The fluctuation was related to the
exploration mechanism of DRL.

4.4 Comparison with conventional dispatching rules

To verify whether the training model can select appropriate dispatching rules at various deci-
sion moments, 16 dispatching rules were compared on the test data set. Test data were config-
ured for 81 production scenarios according to all parameter configurations in Table 1, and 30
groups of test data were randomly generated for each production scenario. Tables 3-5 displays
the comparison results under various number of machines. The data in the table are the average
values of test data. The results of the optimal values are displayed in bold for easy identification.
The test results indicate that the algorithm model of the DDDQN is superior to the single sched-
uling rule in most cases, which reveals satisfactory solution solving ability and generalization
ability of various problems. Finding a scheduling rule that can perform well in all production
scenarios is difficult.

Sun, Han, Gao

148 Advances in Production Engineering & Management 18(2) 2023

Table 3 Test results compared with dispatching rules under five machines

Table 4 Test results compared with dispatching rules under ten machines

Table 5 Test results compared with dispatching rules under fifteen machines

Real-time scheduling for dynamic workshops with random new job insertions by using deep reinforcement learning

Advances in Production Engineering & Management 18(2) 2023 149

4.5 Comparison with the GA algorithm

To prove the computational speed and optimization ability of the model, the DDDQN was com-
pared with the GA. In the GA, an active decoding approach and an elite retention strategy are
used. For the medium- and large-scale problems, the GA first generates an initial scheduling
scheme based on the initial order data. When a new order arrives, the GA reschedules to gener-
ate a new scheduling scheme. The start processing time of all orders differs considerably, and
the number of the remaining operations of each order also differs. The parameters of the GA are
set as follows: population size is 50, the crossover rate is 0.9, the mutation rate is 0.1, and the
iteration number is 300. Some representative data were selected for verification. Each group of
test data consists of 30 randomly generated data. The results are presented in Table 6. The data
in the table are the average values of test data. The scheduling results and calculation time of the
model are superior to the GA in all cases. The average calculation time of the DDDQN model to
generate the scheduling scheme for test data at each decision moment was 0.05 s, which was
almost instantaneous. Thus, the model can be used for real-time scheduling.

Table 6 Comparison results of DDDQN and GA
 Total tardiness CPU times (s)

m Eavg DDT nadd DDDQN GA DDDQN GA

5

25
1.0 10 17357 26263 0.04 46.29

50 45832 64650 0.02 57.38

2.0 10 12571 21354 0.04 46.26
50 36174 53352 0.02 56.34

100
1.0 10 15173 22436 0.04 35.42

50 14768 23195 0.01 8.11

2.0 10 10417 18107 0.04 35.82
50 9874 17173 0.01 8.10

10

25
1.0 10 20981 30552 0.10 92.18

50 54353 107956 0.05 163.86

2.0
10 11218 20531 0.10 91.82
50 35443 88138 0.05 164.19

100
1.0 10 17211 28167 0.10 82.69

50 19839 36521 0.04 28.24

2.0 10 7743 18470 0.10 82.35
50 8800 22720 0.04 28.30

15

25
1.0 10 22058 32677 0.18 139.78

50 62010 130030 0.08 266.73

2.0 10 7334 17217 0.15 138.98
50 32904 98901 0.08 265.63

100
1.0 10 18289 31864 0.18 131.80

50 22665 48197 0.08 57.58

2.0 10 4589 17439 0.16 131.53
50 5889 26732 0.07 58.57

5. Conclusion
A DRL algorithm, namely the DDDQN, was proposed to solve real-time dynamic job shop sched-
uling with new order insertions. SPP technology was applied to the neural network structure. A
five-channel production system state feature expression method that considered both global and
local feature information was considered. As the action space, 16 commonly used dispatching
rules were used, and the corresponding reward function was designed to minimize total tardi-
ness. Finally, considerable data from various production scenarios were generated at random to
train and test the system model.

Compared with conventional dispatching rules and heuristic algorithms, the results revealed
that the algorithm outperformed the single scheduling rule method in most cases, which indicat-
ed that the algorithm can select dispatching rules adaptively in various production states. Com-

Sun, Han, Gao

150 Advances in Production Engineering & Management 18(2) 2023

pared with the GA, the computational speed and optimization ability of the trained models were
validated, and real-time optimization and online decision were performed in dynamic event dis-
turbance.

In the future, numerous uncertain factors, such as emergency orders, order cancellations, un-
certain processing times, equipment failures, and other multiple disturbance factors, will be
studied. Compared with the pure full connection layer neural network, the CNN exhibits a com-
plex structure, which renders model training speed slow. The DQN in this study is a value-based
method that cannot directly optimize the policy. Therefore, policy-based DRL methods, such as
A3C and PPO, should be studied to improve the quality of solutions and the training speed.

References
[1] Zhou, J., Li, P.G., Zhou, Y.H., Wang, B.C., Zang, J.Y., Meng, L. (2018). Toward new-generation intelligent manufac-

turing, Engineering, Vol. 4, No. 1, 11-20, doi: 10.1016/j.eng.2018.01.002.
[2] Wang, X.H., Duan, H.B. (2014). A hybrid biogeography-based optimization algorithm for job shop scheduling

problem, Computers & Industrial Engineering, Vol. 73, 96-114, doi: 10.1016/j.cie.2014.04.006.
[3] Çaliş, B., Bulkan, S. (2015). A research survey: Review of AI solution strategies of job shop scheduling problem,

Journal of Intelligent Manufacturing, Vol. 26, No. 5, 961-973, doi: 10.1007/s10845-013-0837-8.
[4] Baykasoğlu, A., Karaslan, F.S. (2017). Solving comprehensive dynamic job shop scheduling problem by using a

GRASP-based approach, International Journal of Production Research, Vol. 55, No. 11, 3308-3325, doi:
10.1080/00207543.2017.1306134.

[5] Bokrantz, J., Skoogh, A., Ylipää, T., Stahre, J. (2016). Handling of production disturbances in the manufacturing
industry, Journal of Manufacturing Technology Management, Vol. 27, No. 8, 1054-1075, doi: 10.1108/JMTM-02-
2016-0023.

[6] Zhang, F.F., Mei, Y., Nguyen, S., Zhang, M.J. (2020). Evolving scheduling heuristics via genetic programming with
feature selection in dynamic flexible job-shop scheduling, IEEE Transactions on Cybernetics, Vol. 51, No. 4, 1797-
1811, doi: 10.1109/TCYB.2020.3024849.

[7] Kundakcı, N., Kulak, O. (2016). Hybrid genetic algorithms for minimizing makespan in dynamic job shop schedul-
ing problem, Computers & Industrial Engineering, Vol. 96, 31-51, doi: 10.1016/j.cie.2016.03.011.

[8] Cao, H.J., Zhou, J., Jiang, P., Hon, K.K.B., Yi, H., Dong, C.Y. (2020). An integrated processing energy modeling and
optimization of automated robotic polishing system, Robotics and Computer-Integrated Manufacturing, Vol. 65,
Article No. 101973, doi: 10.1016/j.rcim.2020.101973.

[9] Ning, T., Huang, M., Liang, X., Jin, H. (2016). A novel dynamic scheduling strategy for solving flexible job-shop
problems, Journal of Ambient Intelligence and Humanized Computing, Vol. 7, No. 5, 721-729, doi:
10.1007/s12652-016-0370-7.

[10] Fan, W., Zheng, L.Y., Ji, W., Xu, X., Lu, Y.Q., Wang, L.H. (2021). A machining accuracy informed adaptive position-
ing method for finish machining of assembly interfaces of large-scale aircraft components, Robotics and Comput-
er-Integrated Manufacturing, Vol. 67, Article No. 102021, doi: 10.1016/j.rcim.2020.102021.

[11] Zhang, S.C., Wong, T.N. (2017). Flexible job-shop scheduling/rescheduling in dynamic environment: A hybrid
MAS/ACO approach, International Journal of Production Research, Vol. 55, No. 11, 3173-3196, doi:
10.1080/00207543.2016.1267414.

[12] Park, S.C., Raman, N., Shaw, M.J. (1997). Adaptive scheduling in dynamic flexible manufacturing systems: A dy-
namic rule selection approach, IEEE Transactions on Robotics and Automation, Vol. 13, No. 4, 486-502, doi:
10.1109/70.611301.

[13] Wang, Z., Zhang, J.H., Yang, S.X. (2019). An improved particle swarm optimization algorithm for dynamic job
shop scheduling problems with random job arrivals, Swarm and Evolutionary Computation, Vol. 51, Article No.
100594, doi: 10.1016/j.swevo.2019.100594.

[14] Caldeira, R.H., Gnanavelbabu, A., Vaidyanathan, T. (2020). An effective backtracking search algorithm for multi-
objective flexible job shop scheduling considering new job arrivals and energy consumption, Computers & Indus-
trial Engineering, Vol. 149, Article No. 106863, doi: 10.1016/j.cie.2020.106863.

[15] Ghaleb, M., Zolfagharinia, H., Taghipour, S. (2020). Real-time production scheduling in the Industry-4.0 context:
Addressing uncertainties in job arrivals and machine breakdowns, Computers & Operations Research, Vol. 123,
Article No. 105031, doi: 10.1016/j.cor.2020.105031.

[16] Tang, D.B., Dai, M., Salido, M.A., Giret, A. (2016). Energy-efficient dynamic scheduling for a flexible flow shop
using an improved particle swarm optimization, Computers in Industry, Vol. 81, 82-95, doi: 10.1016/j.compind.
2015.10.001.

[17] Panwalkar, S.S., Iskander, W. (1977). A survey of scheduling rules, Operations Research, Vol. 25, No. 1, 45-61, doi:
10.1287/opre.25.1.45.

[18] Lu, M.-S., Romanowski, R. (2013). Multicontextual dispatching rules for job shops with dynamic job arrival, In-
ternational Journal of Advanced Manufacturing Technology, Vol. 67, 19-33, doi: 10.1007/s00170-013-4765-8.

[19] Zhang, H., Roy, U. (2019). A semantics-based dispatching rule selection approach for job shop scheduling, Journal
of Intelligent Manufacturing, Vol. 30, No. 7, 2759-2779, doi: 10.1007/s10845-018-1421-z.

https://doi.org/10.1016/j.eng.2018.01.002
https://doi.org/10.1016/j.cie.2014.04.006
https://doi.org/10.1007/s10845-013-0837-8
https://doi.org/10.1080/00207543.2017.1306134
https://doi.org/10.1080/00207543.2017.1306134
https://doi.org/10.1108/JMTM-02-2016-0023
https://doi.org/10.1108/JMTM-02-2016-0023
https://doi.org/10.1109/TCYB.2020.3024849
https://doi.org/10.1016/j.cie.2016.03.011
https://doi.org/10.1016/j.rcim.2020.101973
https://doi.org/10.1007/s12652-016-0370-7
https://doi.org/10.1007/s12652-016-0370-7
https://doi.org/10.1016/j.rcim.2020.102021
https://doi.org/10.1080/00207543.2016.1267414
https://doi.org/10.1080/00207543.2016.1267414
https://doi.org/10.1109/70.611301
https://doi.org/10.1109/70.611301
https://doi.org/10.1016/j.swevo.2019.100594
https://doi.org/10.1016/j.cie.2020.106863
https://doi.org/10.1016/j.cor.2020.105031
https://doi.org/10.1016/j.compind.2015.10.001
https://doi.org/10.1016/j.compind.2015.10.001
https://doi.org/10.1287/opre.25.1.45
https://doi.org/10.1287/opre.25.1.45
https://doi.org/10.1007/s00170-013-4765-8
https://doi.org/10.1007/s10845-018-1421-z

Real-time scheduling for dynamic workshops with random new job insertions by using deep reinforcement learning

Advances in Production Engineering & Management 18(2) 2023 151

[20] Zhang, F.F., Mei, Y., Zhang, M.J. (2019). A new representation in genetic programming for evolving dispatching
rules for dynamic flexible job shop scheduling, In: Liefooghe, A., Paquete, L. (eds.), Evolutionary Computation in
Combinatorial Optimization. EvoCOP 2019. Lecture Notes in Computer Science, Vol 11452. Springer, Cham, Swit-
zerland, 33-49, doi: 10.1007/978-3-030-16711-0_3.

[21] Ferreira, C., Figueira, G., Amorim, P. (2022). Effective and interpretable dispatching rules for dynamic job shops
via guided empirical learning, Omega, Vol. 111, Article No. 102643, doi: 10.1016/j.omega.2022.102643.

[22] Kaelbling, L.P., Littman, M.L., Moore, A.W. (1996). Reinforcement learning: A survey, Journal of Artificial Intelli-
gence Research, Vol. 4, 237-285, doi: 10.1613/jair.301.

[23] Sutton, R.S., Barto, A.G. (2018). Reinforcement learning: An introduction, Second edition, MIT press, Cambridge,
Massachusetts, USA.

[24] Wang, Y.-C., Usher, J.M. (2004). Learning policies for single machine job dispatching, Robotics and Computer-
Integrated Manufacturing, Vol. 20, No. 6, 553-562, doi: 10.1016/j.rcim.2004.07.003.

[25] Chen, X.L., Hao, X.C., Lin, H.W., Murata, T. (2010). Rule driven multi objective dynamic scheduling by data envel-
opment analysis and reinforcement learning, In: Proceedings of 2010 IEEE International Conference on Automa-
tion and Logistics, Hong Kong, China, 396-401, doi: 10.1109/ICAL.2010.5585316.

[26] Qu, S.H., Wang, J., Shivani, G. (2016). Learning adaptive dispatching rules for a manufacturing process system by
using reinforcement learning approach, In: Proceedings of 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), Berlin, Germany, 1-8, doi: 10.1109/ETFA.2016.7733712.

[27] Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A. (2017). Deep reinforcement learning: A brief
survey, IEEE Signal Processing Magazine, Vol. 34, No. 6, 26-38, doi: 10.1109/MSP.2017.2743240.

[28] Zhu, J., Wang, H., Zhang, T. (2020). A deep reinforcement learning approach to the flexible flowshop scheduling
problem with makespan minimization, In: Proceedings of 2020 IEEE 9th Data Driven Control and Learning Systems
Conference (DDCLS), Liuzhou, China, 1220-1225, doi: 10.1109/DDCLS49620.2020.9275080.

[29] Luo, S. (2020). Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning,
Applied Soft Computing, Vol. 91, Article No. 106208, doi: 10.1016/j.asoc.2020.106208.

[30] Yang, S., Xu, Z., Wang, J. (2021). Intelligent decision-making of scheduling for dynamic permutation flowshop via
deep reinforcement learning, Sensors, Vol. 21, No. 3, Article No. 1019, doi: 10.3390/s21031019.

[31] Li, Y.X., Gu, W.B., Yuan, M.H., Tang, Y.M. (2022). Real-time data-driven dynamic scheduling for flexible job shop
with insufficient transportation resources using hybrid deep Q network, Robotics and Computer-Integrated Man-
ufacturing, Vol. 74, Article No. 102283, doi: 10.1016/j.rcim.2021.102283.

[32] Liu, C.-L., Chang, C.-C., Tseng, C.-J. (2020). Actor-critic deep reinforcement learning for solving job shop schedul-
ing problems, IEEE Access, Vol. 8, 71752-71762, doi: 10.1109/ACCESS.2020.2987820.

[33] Han, B.-A., Yang, J.-J. (2020). Research on adaptive job shop scheduling problems based on dueling double DQN,
IEEE Access, Vol. 8, 186474-186495, doi: 10.1109/ACCESS.2020.3029868.

[34] Wang, L.B., Hu, X., Wang, Y., Xu, S.J., Ma, S.J., Yang, K.X., Liu, Z.J., Wang, W.D. (2021). Dynamic job-shop scheduling
in smart manufacturing using deep reinforcement learning, Computer Networks, Vol. 190, Article No. 107969,
doi: 10.1016/j.comnet.2021.107969.

[35] He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual
recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 37, No. 9, 1904-1916, doi:
10.1109/TPAMI.2015.2389824.

https://doi.org/10.1007/978-3-030-16711-0_3
https://doi.org/10.1016/j.omega.2022.102643
https://doi.org/10.1613/jair.301
https://doi.org/10.1016/j.rcim.2004.07.003
https://doi.org/10.1109/ICAL.2010.5585316
https://doi.org/10.1109/ETFA.2016.7733712
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/DDCLS49620.2020.9275080
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.3390/s21031019
https://doi.org/10.1016/j.rcim.2021.102283
https://doi.org/10.1109/ACCESS.2020.2987820
https://doi.org/10.1109/ACCESS.2020.3029868
https://doi.org/10.1016/j.comnet.2021.107969
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/TPAMI.2015.2389824

