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ABSTRACT

ARTICLE INFO

Dynamic real-time workshop scheduling on job arrival is critical for effective
production. This study proposed a dynamic shop scheduling method integrat-
ing deep reinforcement learning and convolutional neural network (CNN). In
this method, the spatial pyramid pooling layer was added to the CNN to
achieve effective dynamic scheduling. A five-channel, two-dimensional matrix
that expressed the state characteristics of the production system was used to
capture the state of the real-time production of the workshop. Adaptive
scheduling was achieved by using a reward function that corresponds to the
minimum total tardiness, and the common production dispatching rules were
used as the action space. The experimental results revealed that the proposed
algorithm achieved superior optimization capabilities with lower time cost
than that of the genetic algorithm and could adaptively select appropriate
dispatching rules based on the state features of the production system.
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1. Introduction

With the rapid development of information technology, China is gradually entering intelligent
industry 4.0 [1]. With changing market demand, multiple-product small-batch order-type pro-
duction has become prevalent in the manufacturing industry. Therefore, achieving sustainable
and efficient workshop production under complex production conditions, responding quickly to
market changes, and satisfying the diverse needs of customers are critical.

Although job shop scheduling problems (JSSP) [2, 3] primarily address static scheduling is-
sues, many real-time disruption factors, such as equipment failure, dynamic order arrival, emer-
gency order insertion, in the production process are ignored [4, 5]. The insertion of a new order
can drastically change the number and mode of processing tasks. Error accumulation renders
existing production scheduling schemes ineffective, which results in the failure of the production
planning system [6]. Therefore, dynamic real-time production scheduling on the insertion of new
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jobs is crucial for timely response to disruption events and ensuring production requirements
are satisfied.

Current dynamic scheduling methods under order disturbance include heuristic algorithms
[7-11] and dispatching rules [12]. Wang et al. [13] proposed an improved particle swarm opti-
mization (PSO) algorithm to solve the dynamic job shop scheduling problem. Caldeira et al. [14]
solved the flexible job shop scheduling problem on the arrival of a new job by using the im-
proved backtracking search optimization algorithm that minimized makespan, energy consump-
tion, and system stability. Ghaleb et al. [15] proposed three heuristic algorithms to address the
real-time scheduling problem when new jobs are added and equipment fails. Tang et al. [16]
considered minimum energy consumption and makespan as optimization objectives and pro-
posed an improved PSO algorithm to solve the dynamic scheduling problem of flexible flow
shops under new job arrival and equipment failure. In most heuristic algorithms, the dynamic
scheduling problem is converted into a multi-stage static problem. Short-sightedness appears as
the disturbance scale increases. The dispatching rules method can immediately respond to dy-
namic disturbance events and exhibits short computing time and high solution efficiency.

Hundreds of dispatching rules have been proposed for shop scheduling [17, 18]. Zhang et al.
[19] proposed a job shop dispatching rule selection system based on semantics to achieve adap-
tive selection of dispatching rules by scheduling objectives. To reduce the time of job completion
and complexity of process design in the conventional dispatching rule design process, Zhang et
al. [20] proposed an improved genetic programming algorithm that evolves effective dispatching
rules automatically. Ferreira et al. [21] combined machine learning with the problem domain
reasoning to generate effective dispatching rules. Although dispatching rules can respond to
dynamic disturbance events in real time and exhibit short computing time and high solving effi-
ciency, these methods are prone to local optimum and cannot be adjusted adaptively to respond
to various production states.

Reinforcement learning (RL) [22] has been widely used in production scheduling because of
its excellent optimization ability and high computational speed. The continuous interaction be-
tween agent and environment maximizes cumulative rewards [23]. Dispatching rules can be
dynamically and flexibly selected based on the real-time production status, which is suitable for
the dynamic production scheduling problems. Wang et al. [24] used Q-learning to train a single
machine agent and realized the dynamic selection of the three basic dispatching rules with the
minimum average tardiness as the optimization objective. Chen et al. [25] proposed a rule-
driven method for generating high-quality composite dispatching rules for the multi-objective
dynamic job shop scheduling problem by using the Q-learning algorithm. Qu et al. [26] proposed
a Q-learning algorithm that solves the dynamic job shop scheduling problem under random job
arrival and equipment failure by combining the neighborhood search algorithm with the Q-
factor. Although the conventional reinforcement learning algorithm has achieved excellent re-
sults in solving dynamic production scheduling problems, the algorithm is limited to situations
in which the dimension and scale of the system state space are small and discrete. In the deep
reinforcement learning (DRL) [27] algorithm, the perception ability of deep learning is effective-
ly combined with the decision-making ability of reinforcement learning. Thus, DRL can effective-
ly performs complex decision-making in the high-dimensional state space. Zhu et al. [28] pro-
posed a proximal policy optimization (PPO) algorithm to solve the flexible flow shop scheduling
problem by minimizing makespan. The PPO algorithm outperformed the conventional heuristic
algorithm in terms of the quality of the solution. Luo et al. [29] proposed a deep Q-network
(DQN) algorithm to solve the real-time workshop scheduling problem with dynamic job arrival
to minimize total tardiness and achieved excellent results in the randomly generated data exper-
iment. Yang et al. [30] used the A2C algorithm to train an intelligent model for the permutation
flow job shop scheduling problem. This model outperformed the conventional heuristic algo-
rithm in terms of the solving time and solution quality. Li et al. [31] proposed a hybrid DQN
(HDQN) algorithm to solve the dynamic flexible job shop scheduling problem under transporta-
tion resource constraints. In most studies, the production system state is expressed through
numerical features, which requires special manual design.
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The CNN is used for the feature extraction of system state features expressed by multi-
channel images to effectively reduce manual design difficulty and exhibits excellent generality.
However, because of the limitation of CNN feature extraction on the input size of training imag-
es, static scheduling is widely used. Liu et al. [32] designed three channels of two-dimensional
data matrices as system state features for job shop scheduling problems and solved these prob-
lems using the AC algorithm to achieve excellent results on benchmark examples. Han et al. [33]
combined the CNN and DRL to achieve dynamic job shop scheduling. Wang et al. [34] used the
PPO algorithm to solve the job shop scheduling problem outperform GA. Subsequently, random
fine-tuning was performed on some examples to test the generalization ability of the model.

This method is simple and produces excellent results by describing the state features of the
production system using multi-channel images. However, because of the structural characteris-
tics of the CNN, applying the method to dynamic variable data of various image sizes is difficult.
The static model can only process data of the same size, and it exhibits limited generalization.
Multi-channel image system feature representation is yet to be used for dynamic scheduling.
Therefore, in this study, an SPP layer [35] was added to the last layer of the CNN so that the neu-
ral network can handle any size of the input image information and achieve dynamic scheduling
under the state image expression mode of the production system.

The contributions of this paper are as follows: (1) This study is the first to use SPP with neu-
ral networks to solve the dynamic scheduling problem to allow the system model to handle the
input state data of any scale; (2) The state feature expression mode of the production system
was improved. The limitations of the conventional three-channel image design was overcome,
and the system state feature was represented by five-channel data, considering both the global
and local features of system processing state; (3) To assess the effect of the dispatching rules
selected at each decision point on the overall scheduling objective, a novel reward function tar-
geting total tardiness was developed; (4) Comprehensive parameter sensitivity experiments and
algorithm result comparisons were performed. The effectiveness of the calculation speed and
optimization ability of the proposed scheme was demonstrated. The method achieved excellent
generalization results.

2. Overall scheduling framework

A dueling double DQN (DDDQN) algorithm framework was proposed to achieve dynamic job
shop real-time scheduling with constant random new order insertion. The neural network of the
DDDQN algorithm consists of a Q-network and a target network. Each network exhibits the same
structure and is composed of the convolution layer and a full connection layer. To address the
problem of the dynamic image size change caused by the dynamic order arrival, an SPP layer
was added between the CNN convolution layer and full connection layer to ensure consistent
output size of the CNN convolution layer. Thus, the scheduling problem was transformed into a
multi-stage decision-making process by designing a state feature, action space, and reward func-
tion. The agent is trained through interaction with the environment, and the trained agent is
applied to solve the online problem. The framework includes two parts, namely offline training
and online application (Fig. 1).

The scheduling environment comprises equipment and order in the production system,
which is used for the interaction with the agent and providing the current production system
status information. The agent outputs the most appropriate dispatching rule and selects the
highest priority operation for processing. The production system then enters the next state.

In the offline training phase, intermediate data generated in the learning process is stored in
the replay memory, and a minibatch number of sample data are randomly sampled for training.
The Q-network and the target network calculate the Q and target values of the system state, re-
spectively. Q-network parameters are updated by the loss function calculated by the target value
and Q value. The parameters of the target network are copied from the Q-network after a certain
number of steps. The optimal action is selected according to the result of the Q value.

Although offline scheduling requires considerable time to train an agent, when an agent
learns good policy, it can be widely used in online actual data scheduling to obtain optimal
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scheduling results rapidly. The execution process only requires the Q-network to calculate the
optimal Q value without updating various network parameters, calculating the reward value, or
storing sample data and other operations.
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Fig. 1 Scheduling framework with the DDDQN

3. DRL for scheduling
3.1 Problem formulation

The JSPP with new order insertions can be described as follows: a processing system has N or-
ders that are processed on M machines. Each order has n; operations. The objective of produc-
tion scheduling is to generate an optimal scheduling scheme based on the scheduling objectives
and satisfy all constraints. However, when the new order arrives, the operations that were not
started in the original scheduling scheme should be combined with operations in the new order
for rescheduling. When creating the new scheduling scheme, factors such as the starting pro-
cessing times and the number of the remaining operations of each order, should be considered.
The scheduling problem should satisfy the following assumptions: (1) each order has a sequence
constraint on the operations, that is, the next operation can only be processed after the previous
operation is completed; (2) each operation of each order can only be processed by one machine;
(3) each machine can only perform one operation at the same time; (4) when the new order ar-
rives, the ongoing operation cannot be interrupted; (5) the processing time of each operation on
the corresponding machine is known.

3.2 DQN principle

The DQN algorithm is used to solve the problem. The DQN is the most classical algorithms of
DRL. Based on Q-learning, the deep neural network is used to represent value function f. The
input of the neural network is the current states, and the output is the state value func-
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tion Q(s, a). In the DQN, empirical data are used to train the neural network, which is prone to
instability and convergence difficulties. To solve these problems, replay memory and target
network are used in the DQN. Experience replay stores the intermediate data in a fixed-size
storage experience pool in the form of (s;, a;, 11, S¢41), which is generated in the learning process
of Q-learning. The system randomly samples a certain number of small-batch samples from the
replay memory for training. This random sampling not only breaks the correlation of training
samples but also ensures an independent and homogeneous distribution of training samples.
Target network reconstructs a network with the same structure as the original network. The
original network is the Q-network, and the generated network is the target network. During
training, only Q-network parameters are updated, and the parameters of the target network
remain unchanged temporarily. After reaching a certain number of update steps C, the parame-
ters of the Q-network are copied to the target network so that the value of the target network
does not change in a certain update step to ensure system stability. The target value is calculated
as follows:

YPON =, + y max Q(Sex1, @ WF) (1)

The neural network calculates TD errors through the target network and Q-network to up-
date parameters.

In the standard DQN algorithm, the action with the largest Q value is selected, which results
in an overestimation of the Q value. Therefore, the Double DQN (DDQN) algorithm is used to
separate the action selected from the calculation of the Q value and two value functions are used.
The target value of the DDQN is calculated as follows:

yPoubleDON =, +yQ(S¢+1,arg maax Q(St41, @ W), Wi ) (2)

By using various value functions to decouple the target action and Q value, the DDQN algo-
rithm mitigates the overestimation of Q values and achieves excellent stability.

In the DQN, the network outputs the Q value of action, but in practice, the Q value is associat-
ed with the action and state. Therefore, Dueling DQN improves the network structure of the DQN
by adding state value function V(s, w, a) related to the system state and the advantage function
A(s,a, w, B) related to the action before the network output layer and synthesizing these two
functions to generate the action function in the final output layer. Thus, we have the following
expression:

Q(s,a,w,a,B)=V(s;w,a) + (A(s,a,w,B) — 1

o z A(s, a1, @, ) (3)

At+1
where w is a parameter of the common part, o is a parameter of the value function, and f is a

parameter of the advantage function.
In this study, dueling DQN and double DQN are used to solve the dynamic production sched-
uling problem.

3.3 CNN with the SPP layer

The insertion of new orders dynamically changes the size of multi-channel images expressed by
state features. However, the full connection layer in the conventional CNN requires an input of
fixed size. An SPP layer was added between the last convolutional layer and the first full connec-
tion layer in the CNN to divide the feature graph obtained after convolution into a fixed number
of grids of various sizes. The grid is then pooled with mean values. Thus, the feature graph con-
volved with any size can be changed into the output of a fixed size so that the graph has the same
dimension of feature vector with the following full connection layer. Thus, image convolution
with any image size input can achieved as follows (Fig. 2).
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Fig. 2 SPP principle
3.4 Scheduling problem transformation

The problem transformation between scheduling and algorithm design is critical for applying
DRL to JSPP and involves three aspects, namely state feature, action space, and reward function
design.

State features expression

To improve the state changes of the production system, the following rules should be followed
for describing the state features:

e State features should be able to reflect the features and changes of the production system,
and both global and local state features should be considered.

o State features at each moment are represented by a universal feature set.

o State features should be represented numerically for easy calculation and standardization
for uniform scaling of various features.

This study optimized and upgraded the production system state features based on literature
[33]. The limitation of three channels in the conventional system state feature expression was
overcome. Five channels were designed for characterization. The first channel is represented by
the two-dimensional matrix of the order to be processed. The rows of the matrix represent the
order, and the columns represent the operation. The initial value is the processing time of the
corresponding operation in the order. The value of the corresponding position becomes zero on
the completion of an operation. The second channel is represented by the two-dimensional ma-
trix of the completed operations of the order. The initial value is zero. The value of the corre-
sponding position is the processing time on completion of an operation. The third channel is the
remaining processing time of the processing operation. The fourth channel is the processing
time of each operation in the queue to be processed. The fifth channel is the waiting time of each
operation in the waiting queue. The first and second channels express the global state feature,
whereas the third, fourth, and fifth channels express the local state feature. All channel data are
linearly normalized to the maximum value.

Definition of ACTIONS

The action selection involves selecting the most suitable operation waiting for processing, and
the production scheduling rule can select an appropriate process at each scheduling decision
point. In this article, 16 commonly used production dispatching rules are selected as the action
space in DRL. The details are as follows: the select the job with the shortest processing time
(SPT), select the job with the longest processing time (LPT), select the job with the longest re-
maining processing time (LWKR), select the job with the shortest remaining processing time
(MWKR), select the job with the shortest processing time of subsequent operation (SSO), select
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the job with the longest processing time of subsequent operation (LSO), select the job with the
shortest remaining processing time in addition to the current operation (SRM), select the job
with the longest remaining processing time in addition to the current operation (LRM), select
the job that arrives first (FIFO), select the job with the earliest due date, select the job with the
minimum sum of processing time of the current and subsequent operation (SPT+SSO), select the
job with the maximum sum of processing time of the current and subsequent operation
(LPT+LSO0), select the job with the minimum ratio of current processing time to the total work-
ing time (SPT/TWK), select the job with the maximum ratio of current processing time to the
total working time (LPT/TWK), select the job with the minimum product of the current pro-
cessing time and total working time (SPT *TWK), select the job with the maximum product of
current processing time and total working time (LPT * TWK). The diversity of dispatching rules
is increased so that the agent can adaptively select dispatching rules.

Reward FUNCTION

The reward function is key to DRL and directly affects the direction of learning and is closely
related to optimization. The reward function should be designed as follows: (1) the reward func-
tion should accurately express the immediate reward of the current action. (2) Cumulative re-
ward should be closely related to the scheduling objective. (3) Reward function should be uni-
versal and can be used for problems of various scales. Because the overall scheduling objective is
to minimize total tardiness, the following reward function should be designed:

n
e = Tardy_, — Tardy, Tard;, = Z 6; (1) (4)
j=1

where §;(7) represents the tardiness of job J at the current system state, Tard, is the total tardi-
ness of all the jobs in the current system. For the job without tardiness, the tardiness is zero.
Here, 1}, represents the reward received at the decision-making time t,_, after executing the
action, then the system arrives at decision-making time ¢t;. The derivation process of cumulative
reward function R is as follows:

K K
R = 2 T, = Z Tardy,_, — Tard,
k=1 k=1

=Tardy — Tard, + Tard,—Tard, (5)
+--+Tardg_4 — Tardg
=Tardy—Tardy = —Tardg

The derivation process of the cumulative reward formula reveals that it is inversely propor-
tional to the total tardiness, that is, the smaller the total tardiness is, the larger the cumulative
reward value is, which is consistent with the scheduling objective.

Training based on DRL

The scheduling process is a semi-Markov decision process. When any machine completes an
operation or a new order arrives as a decision time point, the agent adaptively selects appropri-
ate dispatching rules, and the highest priority operation is selected for processing. Subsequently,
the machine enters the next state after receiving rewards. The cycle continues until all opera-
tions are finished, that is, a scheduling scheme is obtained. The process is as follows:

Algorithm 1 DDDQN-based training method

1: Initialize replay memory D, minibatch k, learning rate «, target network parameters update every C

steps.

Initialize Q-network with random weights w

Initialize target network Q with weights w™ = w

For episode =1: M do

Reset the system scheduling status to sy and clear schedule results.

while True : (¢t is the decision time point at which an operation is completed or a new order arrives, the
Boolean variable done terminates the loop when all operations are complete)

AR
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7 Select action a; based on e-greedy strategy

8: Execute action a, calculate the immediate reward r;, observe the next state s;,1

9 Store transition(s;, a; 1y, S¢+1, done) in D

10: Random sampling minibatch of transitions (s;, a; i, s;+1, done) from D

11: _ T if done = true
Yi= {ri +yQ (541, argmax,(sip1, a; 0), w™) otherwise

12: Compute TD-error(y; — Q(s;, a; w))?to update the parameters of Q-network

13: Every C steps update the parameters of the target network 0: w™ =

14: end while

15: end for

The training process is divided into inner and outer loops, the outer loop represents the times
of training. After M loops of cyclic training, the agent gradually reaches the ability to adaptively
select the optimal dispatching rules at various decision moments. The inner loop represents a
complete scheduling scheme generation process, starting from the first operation until all opera-
tions are finished, which is an episode, lines 5-14 describe the execution of the inner loop that
starts from the initial state of s, at the decision moment ¢ the agent select and execute the action
a; based on the e-greedy strategy, the suitable operation is scheduled. The reward r;, and the
next state s, are observed, the transition (s, a, 1, S¢+1, done) is stored. Minibatch transitions
are randomly sampled from the replay memory for system training. A loss was calculated ac-
cording to lines 11 and 12, and gradient descent was used to update the parameters of Q-
network. The parameters of the target network were updated by the parameters of Q-network
according to the contents of 13 lines after every C step.

4. Numerical simulation

In numerical simulation, multiple groups of data were used to train the DDDQN. The optimal
training model is then saved, and the model is tested in the new test data of multiple groups of
various production scenarios. The data generation method proposed in a previous study [29] is
randomly generated, and the parameters are presented in Table 1.

According to the arrival time and number of new orders, the number of machines, and the
due date of orders, 81 groups of data of various production scenarios were randomly generated
for the test. Assuming that 30 orders exist at the beginning of each production scenario, the arri-
val time of new jobs follow Poisson distribution. Therefore, the time interval between two con-
secutive new jobs is subjected to exponential distribution. The due date tightness (DDT) repre-
sents the urgency of orders. The due date of order i can be calculated as D; = 4; + (Z’j“ tij) -

DDT. Here, A; is the arrival time of the order, n; is the number of operations in the order, ¢;; is

the processing time of the j operation of the order. The smaller the DDT is, the more urgent the
order due date is.

Table 1 Parameter settings of various production scenarios

Parameter Value
Number of machines 510,15
Number of initial jobs 30
Number of new job insertions 10,30,50
Processing time of each operation Unif[0,50]
Due date tightness 1.0,1.5,2.0

Average value of exponential distribution

between two successive new job arrivals 25,50,100

4.1 Network structure and system parameter setting

The CNN structure of the DDDQN consists of four convolution layers and two full connection
layers. To solve the problem of variable image size, a SPP layer was added between the convolu-
tion layer and the full connection layer. From the first layer to the fourth layer for the convolu-
tion layers, the size of the convolution kernel was 6 x 6, 4 x 4, 3 x 3, 2 x 2, the step size was 2, 2,
2, 1, and the number of output channels was 20, 40, 60, and 80. Because each element in the
state feature image represents an operation, the pooling layer in the CNN results in incomplete
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scheduling information. Therefore, the pooling layer was not used. The full connection layer
consists of two branches of the full connection layer with 512 units. The two branches connect
the state value and the advantage value. Finally, the state and advantage values were combined
to obtain the final result output. The RELU activation function was used for every layer. The Ad-
am optimizer was used to update the parameters.

Parameter setting considerably affected DDDQN performance. Five groups of data were ran-
domly generated for the parameter sensitivity experiment under 10 new order insertions, 10
machines, 50 average time interval between new order arrival, and DDT tardiness coefficient of
1.5. The effects of the training batch, learning rate, replay memory buffer size, and target net-
work parameter updating frequency on algorithm performance were verified. Fig. 3 displays the
training effect under various parameter settings, the total number of training was set to 3000
episodes.
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Fig. 3 Verification results of each hyperparameter: (a) Minibatch size; (b) Learning rate;
(c) Replay memory buffer size (d) Target network updating frequency

Fig. 3(a) verifies the influence of the training batch on the algorithm. The figure reveals that
all parameters exhibits excellent stability. The performance with a batch size of 32 decreased
slightly. Fig. 3(b) displays the influence of various learning rates on the algorithm. The higher
the learning rate is, the more the training effect is unstable. When the learning rate is 0.001, the
algorithm does not even converge. Fig. 3(c) displays the influence of various replay memory
buffer sizes on the algorithm. As displayed in the figure, the larger the replay memory is, the
better the convergence of the algorithm is, and the replay memory with a capacity of 100000
exhibits superior stability. Fig. 3(d) displays the influence of the target network parameter up-
dating frequency on algorithm performance, and the parameters exhibit an effect under various
updating frequencies. According to the verification of various parameters, the final neural net-
work parameter settings are presented in Table 2.
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Table 2 Setting of neural network parameters

Parameters Values

Number of episodes 3000

Explore times steps 3000 - total operation number - 0.3

Epsilon 1 — (1 — gpin - min (1, current;e,/totalsteps))
Replay memory buffer size 100000

Learning rate 0.000001

Minibatch 256

Target network updating frequency 200

Discount factor 1.0

The e-greedy action selection strategy was implemented according to the method mentioned
in a previous study [33]. To ensure the maximum cumulative rewards learned by the agent, the
discount factor is selected as 1.0, that is, the cumulative rewards are not discounted.

4.2 Comparison of various status features expression

To verify the validity of the state feature expression of the proposed five-channel images, the
influence of three state feature expression modes of three-channel images, four-channel images,
and five-channel images on the algorithm were compared. In three-channel images, the produc-
tion system state feature expression method in literature is adopted [33]. Five-channel images
were the proposed production system state feature expression method, and four-channel images
were separated from five-channel images to remove the waiting time channel of each operation
in the waiting queue.

Five groups of data were randomly generated for testing under the following production
configurations: the number of machines was 10, the average time interval between two consecu-
tive new order arrival was 50, DDT was 1.5, and the number of new order insertion were 10, 30,
and 50. The results are displayed in Fig. 4. The figure reveals that with the increase in the new
order insertion scale, the expression methods of three-channel and four-channel both fluctuated
considerably, whereas the proposed expression method exhibited excellent stability.
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Fig. 4 Verification results of various state features: (a) 10 new job insertions; (b) 30 new job insertions;
(c) 50 new order insertions
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4.3 Training process of the DDDQN

The DDDQN was used to train a model with certain generalization ability. The model was tested
with various test data. The model was trained according to the number of machine and the time
interval between the dynamic arrival of orders. Each model was trained for 3000 episodes. In
the training process, 12 groups of randomly generated data were used according to the number
of new orders of 10, 30, and 50 and the DDT of 1.0 and 2.0. Fig. 5 displays the model training
process with five machines and 100 times intervals.
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Fig. 5 Model training process in five machines and 100 times intervals: (a) Average total tardiness during training;
(b) Average reward during training

Figs. 5(a) and 5(b) display the change process of the total tardiness and reward during the
training process. The reward value gradually increases and becomes stable with the increase in
training episodes, whereas the total tardiness decreases. After 1000 episodes of training, the
model becomes stable, which indicates that the DDDQN has learned to adaptively select the ap-
propriate dispatching rules at the decision time. The curve trend of the average reward value is
similar to that of the average total tardiness, which indicates that the designed reward function
exhibited a high correlation with the optimization objective with the minimum total tardiness. A
small fluctuation was observed after the model convergence. The fluctuation was related to the
exploration mechanism of DRL.

4.4 Comparison with conventional dispatching rules

To verify whether the training model can select appropriate dispatching rules at various deci-
sion moments, 16 dispatching rules were compared on the test data set. Test data were config-
ured for 81 production scenarios according to all parameter configurations in Table 1, and 30
groups of test data were randomly generated for each production scenario. Tables 3-5 displays
the comparison results under various number of machines. The data in the table are the average
values of test data. The results of the optimal values are displayed in bold for easy identification.
The test results indicate that the algorithm model of the DDDQN is superior to the single sched-
uling rule in most cases, which reveals satisfactory solution solving ability and generalization
ability of various problems. Finding a scheduling rule that can perform well in all production
scenarios is difficult.
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Table 3 Test results compared with dispatching rules under five machines

SPT+  LPT+ SPT/ LPT/ SPT*  LPT*

SSO LSO TWK  TWK  TWK  TwK

10 17357 19686 28070 17510 29855 20858 27870 18753 29631 27863 18483 18352 27245 22350 27779 17884 27068

10 30 32305 38132 57816 32469 64009 40996 60024 35495 64420 52818 36364 34790 56965 44306 57974 33911 56239

50 45832 53785 87842 45887 101770 57570 96690 50743 103294 74163 52510 48775 87674 64105 87011 48203 85888

10 14908 17218 25612 15059 27386 18393 25401 16299 27162 25395 15896 15887 24780 19883 25310 15417 24614

25 15 30 28547 34363 54069 28717 60239 37230 56253 31743 60648 49046 32326 31024 53201 40542 54208 30146 52510
50 40911 48853 82932 40980 96842 52642 91754 45841 98358 69226 47351 43851 82756 59182 82083 43278 81013

10 12571 14771 23215 12742 24920 15972 22935 13974 24694 22926 13377 13487 22342 17472 22855 13006 22266

20 30 24932 30656 50447 25145 56486 33541 52504 28151 56878 45275 28323 27369 49518 36926 50492 26516 48963

50 36174 44031 78168 36321 91953 47829 86824 41178 93428 64290 42214 39115 77991 54527 77227 38562 76427

10 16838 19093 27552 16932 29539 20199 27498 18072 29347 26825 17965 17791 26742 21664 27282 17274 26818

10 30 22246 24766 39989 22278 43158 27871 39063 24663 42527 34269 24550 23414 38877 28719 39383 22724 39588

50 26119 27639 49293 26601 51064 32367 45594 30007 49455 38772 28549 26413 45654 32019 48605 25648 47967

10 14346 16584 25049 14444 27028 17692 24988 15572 26834 24313 15400 15284 24240 19155 24773 14765 24329

50 15 30 18721 21317 36542 18822 39756 24381 35655 21185 39110 30782 21034 19946 35451 25304 35889 19270 36192
50 21876 23515 44928 22292 47016 28009 41471 25624 45358 34521 24043 22165 41481 27941 44191 21458 43722

10 12003 14118 22644 12113 24533 15235 22492 13222 24329 21800 12904 12865 21800 16748 22298 12355 21981

20 30 15568 18155 33328 15700 36565 21106 32420 17997 35857 27380 17561 16755 32305 22259 32545 16166 33112

50 18074 19912 41027 18597 43405 24099 37736 21828 41625 30466 19865 18475 37867 24497 40117 17910 40067

10 15173 17021 25108 15352 26651 18225 24509 16480 26259 23709 16125 16014 24234 19305 24820 15536 24473

10 30 15748 17485 27199 15902 27681 19793 25101 17467 27181 24300 16815 16495 25888 19741 27063 15994 26604

50 14768 16025 25094 14954 25826 17951 23477 16130 25365 22904 15595 15418 23825 18441 24543 14841 24458

10 12705 14556 22641 12893 24196 15747 22049 14013 23799 21234 13584 13548 21785 16846 22330 13070 22025

100 15 30 12998 14804 24421 13163 25045 17017 22444 14700 24530 21577 14014 13789 23212 17087 24245 13304 23876
50 12189 13498 22442 12376 23327 15326 20982 13507 22852 20335 13043 12847 21304 15935 21861 12311 21896

10 10417 12202 20294 10641 21823 13362 19656 11744 21393 18780 11157 11218 19466 14562 19914 10746 19771

20 30 10560 12375 21850 10756 22603 14459 19976 12243 22066 18967 11374 11343 20777 14748 21616 10924 21456

50 9874 11166 20028 10097 20997 12896 18637 11209 20480 17860 10602 10512 19004 13700 19346 10034 19620

Eavg DDT  nagd DDDQN SPT LPT LWKR MWKR SSO LSO SRM LRM FIFO EDD

Table 4 Test results compared with dispatching rules under ten machines

SPT+ LPT+ SPT/ LPT/ SPT*  LPT*
SSO LSO TWK  TWK  TWK  TWK
10 20981 22591 31577 21132 32255 25542 28239 21785 31198 30193 21617 22329 30241 24314 31177 20934 30617

10 30 33733 37593 55837 33878 59908 43261 52166 35861 57985 50718 36140 37020 54543 40785 55596 34486 54841

50 54353 60774 95044 54712 105769 71725 88968 57266 102888 81281 58799 60474 90305 66574 93949 55778 92471
10 15896 17492 26486 16055 27155 20447 23143 16704 26098 25092 16393 17230 25154 19218 26081 15834 25540

25 15 30 26682 30549 48797 26854 52863 36216 45126 28843 50938 43670 28891 29974 47514 33743 48551 27442 47835

Eavg DDT  nadd DDDON SPT LPT LWKR MWKR SsO LSO SRM LRM FIFO EDD

50 44665 51057 85352 45018 96054 62014 79251 47592 93170 71562 48740 50757 80611 56868 84235 46064 82813
10 11218 12496 21544 11469 22067 15486 18173 12142 21006 19992 11478 12280 20249 14388 21066 10899 20735
2.0 30 20163 23680 41964 20383 45856 29296 38215 22321 43910 36623 21926 23159 40714 27071 41575 20637 41182
50 35443 41592 75924 35946 86383 52458 69664 38515 83493 61844 38873 41317 71231 47648 74616 36716 73633
10 19524 20891 29663 19760 30786 23937 26574 20428 29779 27904 20322 20955 28548 22412 29925 19604 29158

1.0 30 26583 28375 45016 27452 47407 33446 39682 28857 44996 37856 28725 28281 43301 30408 45299 26766 44594

50 33767 35203 61152 35939 60039 44526 49236 37475 56292 47583 37539 36658 56320 37714 61198 33730 60224

10 14441 15795 24575 14687 25691 18845 21486 15359 24682 22804 15189 15856 23472 17331 24826 14507 24112

50 15 30 19467 21245 37726 20195 40338 26211 32554 21585 37958 30614 21423 21100 36089 23334 37989 19633 37378
50 24179 25669 51299 26152 50594 34705 39658 27685 46865 37768 27502 27022 46608 28274 51316 24152 50496

10 9738 10907 19714 10149 20688 13936 16602 10799 19671 17706 10285 11003 18614 12662 19854 9662 19438

2.0 30 13470 14995 31111 13963 34026 19701 26216 15344 31656 23763 14672 14816 29650 17493 31154 13625 30927

50 544470 18053 42552 18184 42803 26247 31776 19565 39129 29031 18947 19225 38292 21088 42314 16826 42168

10 17211 18062 26805 17587 27139 21091 23701 18277 26008 24274 17847 18353 25360 19446 26445 17240 26114

1.0 30 17389 18268 27961 18330 27786 21831 23995 18980 26194 24260 18605 18548 26906 19710 27501 17384 27545

50 19839 20904 31334 21012 31206 24680 27157 21590 29455 27729 21248 21469 29566 22318 31428 19836 30832

10 12234 13112 21796 12588 22226 16078 18769 13282 21107 19283 12781 13378 20406 14518 21417 12275 21164

100 1.5 30 11913 12824 22216 12632 22401 16191 18572 13283 20822 18697 12879 13048 21299 14331 21721 11922 21848
50 13601 14726 24832 14437 25137 18308 20932 15070 23434 21397 14678 15240 23231 16205 24887 13601 24408

10 7743 8658 17171 8316 17646 11477 14229 8998 16517 14436 8156 8897 15876 10249 16670 7859 16747
2.0 30 7413 8379 17390 8232 17813 11454 14046 8774 16273 13799 8194 8571 16635 10075 16779 7527 17197
50 8800 9903 19595 9633 20152 13151 15982 10256 18472 16105 9647 10369 18204 11612 19556 8910 19386

Table 5 Test results compared with dispatching rules under fifteen machines
SPT+ LPT+ SPT/ LPT/ SPT* LPT*
SSO LSO TWK TWK TWK TWK
10 22058 23233 31924 22220 31724 26677 27884 22971 30298 29570 22884 23507 30281 24643 31552 22022 31409
1.0 30 43428 47477 66167 43666 69721 54727 58929 44931 67134 60692 45554 48028 62792 50423 65351 44820 65288
50 62010 69072 101619 62266 112907 80190 90506 64825 109394 88322 65971 68955 96448 74621 100463 64080 100294
10 14403 15539 24249 14606 24024 18982 20203 15343 22598 21870 15239 15812 22619 16960 23866 14331 23779
1.5 30 31929 35961 54661 32194 58207 43217 47418 33470 55619 49176 34300 36519 51295 38915 53842 33308 53851
50 46976 54008 86584 47275 97842 65126 75445 49835 94329 73255 50662 53895 81410 59562 85398 49019 85297
10 7334 8288 17063 8336 16362 11655 12974 8995 14954 14210 8249 8596 15475 10082 16485 7202 16848
2.0 30 21257 24694 43555 21926 46752 31911 36133 23125 44153 37669 23234 25351 40249 27998 42562 22244 43059
50 32904 39352 71957 33690 82912 50335 60800 36150 79406 58199 36263 39264 66871 45302 70549 34677 70861
10 21029 21865 29949 21193 30426 25171 26476 21726 28820 27873 21855 22078 28617 23108 29644 21066 29784
1.0 30 32289 33714 51706 32983 52959 40450 43539 34230 49804 43101 34524 34815 48151 35389 51248 32480 50473
50 38373 38744 63575 40050 62705 47647 51403 41284 59086 49754 41548 40156 58561 40858 61844 38085 62948
10 13358 14180 22297 13574 22754 17491 18809 14122 21152 20183 14013 14396 20978 15452 21965 13396 22172
50 1.5 30 21044 22477 40327 21716 41791 29076 32281 22884 38709 31722 23277 23554 36876 24233 39815 21236 39162
50 23960 24485 48881 25429 48478 33044 37038 26681 44917 35094 26630 25716 43984 26674 47048 23727 48349
10 6461 7219 15262 7335 15351 10340 11753 7849 13776 12608 7349 7381 13961 8828 14691 6494 15355
2.0 30 11824 13065 30074 12674 31974 18937 22485 13555 29025 21046 12782 14019 26907 15283 29286 12116 29269
50 13149 13821 36133 14338 37025 20928 25650 15344 33588 22410 14083 14595 31933 16432 33995 13226 36082
10 18289 19347 27279 19016 26979 22250 23649 19559 25844 24482 19284 19640 25772 20125 26824 18281 26956
1.0 30 20760 21456 32037 21560 30585 25180 26591 22381 28830 27015 22220 22138 29728 22390 31795 20778 31263
50 22665 23284 35045 23668 32977 27470 29123 24374 31529 29369 24431 23971 33033 24490 34917 22666 34470
10 10811 11865 19689 11512 19569 14712 16171 12039 18434 16913 11776 12159 18248 12704 19215 10803 19424
100 1.5 30 11766 12475 22497 12301 21643 15950 17502 13102 19956 17813 12990 13113 20475 13539 22283 11809 21898
50 12626 13301 24121 13092 22945 17011 18764 13839 21531 18970 13640 13940 22381 14583 23942 12638 23689
10 4589 5622 12967 5758 12852 8112 9721 6253 11736 9797 5394 5876 11688 6840 12424 4707 13028
2.0 30 5302 5996 15253 6139 14699 8970 10770 6872 13072 10376 6079 6604 13564 7505 14796 5426 14896
50 5889 6585 16380 6687 15730 9626 11608 7302 14393 11133 6549 7092 15003 8084 16061 6069 16318

Eavg DDT nadd DDDQN SPT LPT LWKR MWKR SsO LSO SRM LRM FIFO EDD

25
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4.5 Comparison with the GA algorithm

To prove the computational speed and optimization ability of the model, the DDDQN was com-
pared with the GA. In the GA, an active decoding approach and an elite retention strategy are
used. For the medium- and large-scale problems, the GA first generates an initial scheduling
scheme based on the initial order data. When a new order arrives, the GA reschedules to gener-
ate a new scheduling scheme. The start processing time of all orders differs considerably, and
the number of the remaining operations of each order also differs. The parameters of the GA are
set as follows: population size is 50, the crossover rate is 0.9, the mutation rate is 0.1, and the
iteration number is 300. Some representative data were selected for verification. Each group of
test data consists of 30 randomly generated data. The results are presented in Table 6. The data
in the table are the average values of test data. The scheduling results and calculation time of the
model are superior to the GA in all cases. The average calculation time of the DDDQN model to
generate the scheduling scheme for test data at each decision moment was 0.05 s, which was
almost instantaneous. Thus, the model can be used for real-time scheduling.

Table 6 Comparison results of DDDQN and GA

Total tardiness CPU times (s)
m Eavg DDT nadd DDDQN GA DDDQN GA
1.0 10 17357 26263 0.04 46.29
25 50 45832 64650 0.02 57.38
20 10 12571 21354 0.04 46.26
s 50 36174 53352 0.02 56.34
1.0 10 15173 22436 0.04 35.42
100 50 14768 23195 0.01 8.11
20 10 10417 18107 0.04 35.82
50 9874 17173 0.01 8.10
1.0 10 20981 30552 0.10 92.18
25 50 54353 107956 0.05 163.86
20 10 11218 20531 0.10 91.82
10 ' 50 35443 88138 0.05 164.19
1.0 10 17211 28167 0.10 82.69
100 50 19839 36521 0.04 28.24
20 10 7743 18470 0.10 82.35
50 8800 22720 0.04 28.30
1.0 10 22058 32677 0.18 139.78
28 50 62010 130030 0.08 266.73
20 10 7334 17217 0.15 138.98
15 50 32904 98901 0.08 265.63
1.0 10 18289 31864 0.18 131.80
100 50 22665 48197 0.08 57.58
20 10 4589 17439 0.16 131.53
50 5889 26732 0.07 58.57

5. Conclusion

A DRL algorithm, namely the DDDQN, was proposed to solve real-time dynamic job shop sched-
uling with new order insertions. SPP technology was applied to the neural network structure. A
five-channel production system state feature expression method that considered both global and
local feature information was considered. As the action space, 16 commonly used dispatching
rules were used, and the corresponding reward function was designed to minimize total tardi-
ness. Finally, considerable data from various production scenarios were generated at random to
train and test the system model.

Compared with conventional dispatching rules and heuristic algorithms, the results revealed
that the algorithm outperformed the single scheduling rule method in most cases, which indicat-
ed that the algorithm can select dispatching rules adaptively in various production states. Com-
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pared with the GA, the computational speed and optimization ability of the trained models were
validated, and real-time optimization and online decision were performed in dynamic event dis-
turbance.

In the future, numerous uncertain factors, such as emergency orders, order cancellations, un-
certain processing times, equipment failures, and other multiple disturbance factors, will be
studied. Compared with the pure full connection layer neural network, the CNN exhibits a com-
plex structure, which renders model training speed slow. The DQN in this study is a value-based
method that cannot directly optimize the policy. Therefore, policy-based DRL methods, such as
A3C and PPO, should be studied to improve the quality of solutions and the training speed.
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