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A B S T R A C T A R T I C L E   I N F O 
This study investigates a flow shop scheduling problem with queue time lim-
its and skipping jobs, which are common scheduling requirements for semi-
conductor and printed circuit board manufacturing systems. These manufac-
turing systems involve the most complex processes, which are strictly con-
trolled and constrained to manufacture high-quality products and satisfy 
dynamic customer orders. Further, queue times between consecutive stages 
are limited. Given that the queue times are limited, jobs must begin the next 
step within the maximum queue time after the jobs in the previous step are 
completed. In the considered flow shop, several jobs can skip the first step, 
referred to as skipping jobs. Skipping jobs exist because of multiple types of 
products processed in the same flow shop. For the considered flow shop, this 
paper proposes a mathematical programming formulation and a genetic algo-
rithm to minimize the makespan. The GA demonstrated its strengths through 
comprehensive computational experiments, demonstrating its effectiveness 
and efficiency. As the problem size increased, the GA's performance improved 
noticeably, while maintaining acceptable computation times for real-world 
fab facilities. We also validated its performance in various scenarios involving 
queue time limits and skipping jobs, to further emphasize its capabilities. 
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1. Introduction
This study focused on the scheduling problem in a three-machine flow shop with queue time 
limits and skipping jobs. Such scheduling problems are found in semiconductor and printed cir-
cuit board (PCB) manufacturing systems, which play key roles in the electronics industry as the 
major components of most electronic products. Such manufacturing systems generally fabricate 
multiple types of products. Therefore, meeting customer demand in terms of quality and im-
proving the throughput rate are the most important objectives. Queue time limits and skipping 
jobs are related to product quality and multiple types of products, respectively. In this paper, we 
investigate the scheduling problem in the considered flow shop with the objective of minimizing 
makespan subject to queue time limits and skipping jobs. 

Semiconductor wafer fabrication is generally a time-critical production environment owing to 
many highly reactive chemical processes. Thus, the queue times of work-in-process wafers in a fab 
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are strictly managed and constrained to satisfy wafer quality requirements [1]. These constraints 
are common in wafer lot scheduling, especially at Korean semiconductor manufacturing compa-
nies that enforce queue time limits across multiple process steps to enhance overall quality. 

Generally, semiconductor manufacturing involves limited queue times for two main reasons. 
Firstly, it is crucial to maintain the cleanliness of the wafer surfaces during the waiting period 
before proceeding to the next stage. Prolonged exposure of wafer surfaces to air heightens the 
risk of contamination by impurities, leading to significant quality issues. Secondly, it is essential 
to preserve the chemical efficacy treated in the previous step while awaiting the subsequent 
stage. Therefore, chemically treated wafers must proceed to the next step within a specified 
timeframe known as the limited queue time. Failure to initiate the subsequent processing step 
within this queue time limit may require reworking or discarding the wafers, especially in cases 
of severe contamination [2]. Consequently, this causes lower productivity and business losses. 
As semiconductor processes become more complex, the number of processes with queue time 
limits increases, increasing their importance to semiconductor manufacturing. In addition to 
semiconductor manufacturing systems, queue time limits can also be found in many manufac-
turing systems for batteries, food, steel, and crude oil [33]. 

In a semiconductor manufacturing fab, several types of wafer products are produced simul-
taneously. Their main process flows are similar, but some specific steps are different depending 
on the product types. Thus, flow shops modeled in a semiconductor fab are designed to process 
multiple product types, some skipping unnecessary steps. For example, if the first step is clean-
ing or metrology, some lots that do not need this step skip it and go straight to the second step. 
For such jobs, the queue time limits are set between the second and third steps. With an increase 
in the number of semiconductor products, this feature has become more common. Flow shops 
with skipping jobs are also found in PCB manufacturing systems for multi-variety low-volume 
production. Additionally, skipping jobs are found in various manufacturing systems, including 
pharmaceuticals, molten iron, stainless steel, and flour [1, 27, 30]. 

A typical flow shop consists of a series of machines or workstations arranged in sequential 
order and processes every job through the machines in that order. If the orders of all jobs are the 
same across all machines, this is referred to as a permutation schedule. In general, when job i 
completes on machine k but job j is still unfinished on machine (𝑘𝑘 + 1), job i can wait until job j 
completes. However, in a flow shop with queue time limits, job i cannot wait for a long time. In 
other words, after job i completes on machine k, its subsequent operation on machine (𝑘𝑘 + 1) 
must begin within a specified limited queue time. On the other hand, Most flow shop scheduling 
studies have assumed that every job processes at all stages, which is currently not valid because 
of the increased customization and diversification of products [3]. 

Using three-field notation in [4] to define theoretically the considered scheduling problem, it 
is F3|max-wait, skip|Cmax. The first field means a flow shop with three machines. The second field 
represents problem characteristics, i.e., queue time limits and skipping jobs, respectively. The 
last field shows the makespan as the objective function to be minimized. As mentioned in [5], a 
two-machine flow shop with queue time limits is NP-hard, so this scheduling problem is also NP-
hard. 

We provide a mixed-integer programming (MIP) formulation to describe the scheduling 
problem clearly. The MIP can be solved using a commercial optimization solver. However, ob-
taining optimal solutions using the solver may require a significant computation time or it can-
not be achieved within an acceptable time, given that the problem is NP-hard. Therefore, we 
propose a genetic algorithm to rapidly obtain adequate and effective solutions. The genetic algo-
rithm was evaluated under different cases of computational experiments, and it showed highly 
effective and efficient performance. 

The structure of this paper is as follows. Section 2 outlines the assumptions and notation 
used to describe the proposed algorithms and the mixed-integer programming formulation for 
the scheduling problem. Section 3 introduces heuristic algorithms, while their evaluation is dis-
cussed in Section 4. Lastly, Section 5 provides the study's conclusions and a summary of the find-
ings. 
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2. Literature survey 
With reference to the available literature, most flow shop scheduling studies with queue time 
limits (QTL) have focused on two-machine problems. Yang et al. [5] proved that minimizing the 
makespan in a two-machine flow shop with QTL is NP-hard and proposed a branch-and-bound 
(B&B) algorithm. Additionally, advanced lower bounds and dominance properties were devel-
oped in [6, 7], while a constructive heuristic algorithm was proposed in [8]. Furthermore, An et 
al. [9] included not only QTL but also sequence-dependent setup times and developed heuristic 
algorithms and a B&B algorithm, while Lee [10] suggested a genetic algorithm to minimize the 
total tardiness for the same flow shop. In addition, Dhouib et al. [11] proposed a MIP and a simu-
lated annealing algorithm to hierarchically minimize the number of tardy jobs and makespan for 
multi-machine flow shops with QTL, whereas Kim and Lee [12] introduced a three-machine flow 
shop with overlapping QTL. To minimize the total tardiness, Hamdi and Loukil [13] suggested a 
lower bound scheme based on Lagrangian relaxation and a heuristic algorithm, and Joo et al. 
[14] performed simulation experiments with a list scheduling rule. Furthermore, flow shop 
problems with QTL have been considered in several recent studies [15-23]. 

In the relevant literature, scheduling problems with skipping jobs have not been extensively 
investigated in comparison with other types of flow shops. However, a feature of skipping jobs 
has recently received significant research attention, given that multiple product types with diffe-
rent specifications are produced in the same manufacturing fabrication. Rajendran and Ziegler 
[24] examined the performance of dispatching rules and a heuristic algorithm to minimize total 
flow time. Saravanan et al. [25] and Dios et al. [26] proposed a simulated annealing algorithm 
and various heuristic algorithms, respectively, to minimize the makespan, whereas, Saravanan et 
al. [27] suggested a genetic algorithm to minimize the mean tardiness. On the other hand, Tseng 
et al. [28] proposed a heuristic to change a given permutation schedule to an improved non-
permutation schedule for minimizing the makespan, while Li et al. [29] proposed a multi-
objective artificial bee colony algorithm with respect to flowtime, earliness, and tardiness in 
molten iron processing. Recently, in the context of Industry 4.0 production, Rossit et al. [30] in-
troduced a flow shop with skipping jobs. 

In the literature, QTL and skipping jobs in flow shop scheduling have been separately studied, 
and their incorporation of them has received limited attention, with only a few studies exploring 
them together. Notably, for no-wait flow shop problems with skipping jobs, Glass et al. [31] pro-
posed and analyzed several heuristic algorithms for minimizing the makespan in a two-machine, 
while Smutnicki et al. [32] devised a method to determine the cyclic schedule with minimal cycle 
time. For the general queue time limits, Ruiz et al. [33] investigated a comprehensive flow shop 
problem encompassing various features, such as queue time limits, skipping jobs, and the inclu-
sion of machine eligibility, machine release dates, precedence constraints, and sequence-
dependent setup times, and they evaluated simple dispatching rules and heuristic algorithms. 
Additionally, Yu et al. [1] focused on a two-machine flow shop with QTL and skipping jobs and 
they analyzed mathematical properties, explored the reduction of the search space, and devel-
oped efficient approximation algorithms for minimizing queue time variations. Furthermore, 
Han and Lee [34] dealt with minimizing total tardiness in a flow shop scheduling problem that 
involved queue time limits and skipping jobs. 

In the existing literature, there is a notable gap in flow shop research regarding F3|max-wait, 
skip|Cmax. It is important to highlight that the study conducted by Han and Lee [34] focused on 
minimizing total tardiness in a flow shop scheduling problem specifically within the semicon-
ductor foundry business. This industry places significant emphasis on satisfying customer deli-
very dates. However, in our present study, we shift our attention to the memory business, where 
factors such as equipment utilization and throughput take precedence. Thus, the objective of this 
study is to minimize the makespan. It is worth mentioning that this study represents the first 
attempt to tackle this particular problem, and the outcomes obtained can serve as a foundational 
basis for future research and advancements in this field. 
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3. Problem description 
In this section, we describe the considered scheduling problem with assumptions, notation, and 
MIP formulation. The considered flow shop has three stages (k = 1, 2, 3), and each stage has a 
machine mk. All jobs (i = 1, 2,…, n) are given and are available to start at time zero, and all infor-
mation for making schedules are provided in advance. That is, for job i, processing time PTik on 
machine k and queue time limit QTik between mk and m(k+1) are already known. Among the jobs, 
there are jobs starting at m1, called normal jobs, and skipping jobs starting at m2. For this sched-
uling problem, the objective is to minimize the makespan which is equal to the completion time 
of the last processed job on m3. 

To address this problem, we restrict a solution space only to permutation schedules. In par-
ticular, given a specific job sequence, all jobs follow that sequence and are processed on 
machines in the same order. Although an optimal schedule may not be included in the 
permutation schedules, many studies with QTL have assumed permutation schedules. This is 
because lots in semiconductor manufacturing fabs are typically processed in permutation 
schedules for traceability, manageability, and flexibility in material handling [7]. The followings 
are additional assumptions made in this study. 

Pre-emption is not permitted, meaning a job cannot be interrupted once it starts processing. 
Each job can be processed on only one machine at a time, and each machine can process only 
one job at a time. The queue time limits must be satisfied without failure. However, the number 
of jobs queueing between machines is not limited. 

Additionally, the following symbols in Table 1 are used to describe the MIP and the proposed 
algorithms. 
 

Table 1 The symbols used in the algorithms 
Symbol Meaning 
h index of the position in a sequence, h = 1,…, n 
[h] index of a job placed at the h-th position in a sequence 
xih = 1 if job i is placed at the h-th position in a sequence; otherwise, 0  
ST[h]k the time at which the h-th job starts on mk 
CT[h]k the time at which the h-th job completes on mk 

 

We provide equations for the completion times of all jobs in a given sequence. For the first 
scheduled job (h = 1), Eqs. 1 to 3 calculate the completion times on the three machines, respec-
tively. Obviously, the first job is processed immediately without waiting. 

𝐶𝐶𝐶𝐶[1]1 = 𝑃𝑃𝐶𝐶[1]1 (1) 

𝐶𝐶𝐶𝐶[1]2 = 𝐶𝐶𝐶𝐶[1]1 + 𝑃𝑃𝐶𝐶[1]2 (2) 

𝐶𝐶𝐶𝐶[1]3 = 𝐶𝐶𝐶𝐶[1]2 + 𝑃𝑃𝐶𝐶[1]3 (3) 
From the second position onwards (h = 2,…, n), the calculations for the completion times on 

the first two machines (m1 and m2) differ between the normal jobs starting at m1 and skipping 
jobs starting at m2. Eqs. 4 and 5 computes the completion times of the normal jobs on m1 and m2, 
while Eqs. 6 and 7 computes those of the skipping jobs. The completion times of the final ma-
chine are computed using Eq. 8. 

𝐶𝐶𝐶𝐶[ℎ]1 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝐶𝐶[ℎ−1]1 + 𝑃𝑃𝐶𝐶[ℎ]1,𝐶𝐶𝐶𝐶[ℎ−1]2 − 𝑄𝑄𝐶𝐶[ℎ]1,𝐶𝐶𝐶𝐶[ℎ−1]3 − 𝑄𝑄𝐶𝐶[ℎ]2 − 𝑃𝑃𝐶𝐶[ℎ]2 − 𝑄𝑄𝐶𝐶[ℎ]1� (4) 

𝐶𝐶𝐶𝐶[ℎ]2 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝐶𝐶[ℎ]1,𝐶𝐶𝐶𝐶[ℎ−1]2� + 𝑃𝑃𝐶𝐶[ℎ]2,𝐶𝐶𝐶𝐶[ℎ−1]3 − 𝑄𝑄𝐶𝐶[ℎ]2� (5) 

𝐶𝐶𝐶𝐶[ℎ]1 = 𝐶𝐶𝐶𝐶[ℎ−1]1 (6) 

𝐶𝐶𝐶𝐶[ℎ]2 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝐶𝐶[ℎ−1]2 + 𝑃𝑃𝐶𝐶[ℎ]2,𝐶𝐶𝐶𝐶[ℎ−1]3 − 𝑄𝑄𝐶𝐶[ℎ]2� (7) 

𝐶𝐶𝐶𝐶[ℎ]3 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝐶𝐶[ℎ]2,𝐶𝐶𝐶𝐶[ℎ−1]3� + 𝑃𝑃𝐶𝐶[ℎ]3 (8) 
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The next is the MIP formulation to clearly define the considered scheduling problem and to ser-
ve a benchmark schedule using an optimization solver. Herein, normal jobs and skipping jobs 
are not distinguished. In particular, it is assumed that skipping jobs have zero processing time at 
m1 and sufficiently long queue times between m1 and m2, to render the queue time limits non-
significant, i.e., PTi1 = 0 and QTi1 = ∞ for skipping jobs. 

[P] Minimize 𝐶𝐶𝐶𝐶[𝑛𝑛]3 (9) 

subject to ∑ 𝑚𝑚𝑖𝑖ℎ𝑖𝑖 = 1,     1 ≤ ℎ ≤ 𝑛𝑛 (10) 

∑ 𝑚𝑚𝑖𝑖ℎℎ = 1,     ∀𝑖𝑖 (11) 

𝑆𝑆𝐶𝐶[ℎ]𝑘𝑘 +∑ 𝑃𝑃𝐶𝐶𝑖𝑖𝑘𝑘𝑚𝑚𝑖𝑖ℎ𝑖𝑖 ≤ 𝑆𝑆𝐶𝐶[ℎ+1]𝑘𝑘,     1 ≤ ℎ ≤ 𝑛𝑛 − 1, 1 ≤ 𝑘𝑘 ≤ 3 (12) 

𝑆𝑆𝐶𝐶[ℎ]𝑘𝑘 +∑ 𝑃𝑃𝐶𝐶𝑖𝑖𝑘𝑘𝑚𝑚𝑖𝑖ℎ𝑖𝑖 ≤ 𝑆𝑆𝐶𝐶[ℎ]𝑘𝑘+1,     1 ≤ ℎ ≤ 𝑛𝑛, 1 ≤ 𝑘𝑘 ≤ 2 (13) 

𝑆𝑆𝐶𝐶[ℎ]𝑘𝑘 +∑ (𝑃𝑃𝐶𝐶𝑖𝑖𝑘𝑘 + 𝑄𝑄𝐶𝐶𝑖𝑖𝑘𝑘)𝑚𝑚𝑖𝑖ℎ𝑖𝑖 ≥ 𝑆𝑆𝐶𝐶[ℎ]𝑘𝑘+1,     1 ≤ ℎ ≤ 𝑛𝑛, 1 ≤ 𝑘𝑘 ≤ 2 (14) 

𝑆𝑆𝐶𝐶[ℎ]3 + ∑ 𝑃𝑃𝐶𝐶𝑖𝑖3𝑚𝑚𝑖𝑖ℎ𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶[ℎ]3,     1 ≤ ℎ ≤ 𝑛𝑛 (15) 

𝑆𝑆𝐶𝐶[ℎ]𝑘𝑘 ≥ 0,      1≤ ℎ ≤ 𝑛𝑛, 1 ≤ 𝑘𝑘 ≤ 3 (16) 

𝑚𝑚𝑖𝑖ℎ ∈ {0, 1},     ∀𝑖𝑖, 1 ≤ ℎ ≤ 𝑛𝑛 (17) 
 

Eq. 9 represents the objective function's makespan, which is the maximum completion time of 
the jobs. To ensure permutation schedules without preemption, Eqs. 10 and 11 stipulate that 
each position can accommodate only one job and each job can and must only occupy one posi-
tion in the sequence, respectively. Eq. 12 defines the relationship between the start times of two 
consecutive jobs, while Eq. 13 defines the relationship between the start times on two conse-
cutive machines. To satisfy queue time limits, Eq. 14 guarantees that each job's subsequent ope-
ration starts within the specified queue time. Eq. 15 calculates the completion times of the jobs, 
and Eqs. 16 and 17 establish the decision variables' domains. 

4. Used Methods: Genetic algorithms 
Because the problem considered is NP-hard, an effective and efficient heuristic algorithm is 
required to quickly obtain adequate solutions. Thus, we propose a genetic algorithm (GA), which 
is a nature-inspired evolutionary optimization method. The GA is one of the most commonly 
used methods because it has low mathematical requirements and is highly flexible in application 
[35-38]. The following subsections describe the proposed GA design. 

4.1 Solution representation and fitness 

The solutions to the problem considered are expressed in permutation schedules, which are 
sequences of job indices that can be directly represented in the chromosome structure of the GA. 
Each solution has an objective function value, which is the makespan of the schedule and should 
be minimized. Thus, the makespan to be minimized was used for fitness evaluation. 

4.2 Initial population 

To generate an initial population, a constructive heuristic algorithm referred to as the NEH (Na-
waz, Enscore, and Ham) algorithm was used. Since the NEH algorithm has shown good perfor-
mance in many flow shop scheduling problems, but it does not guarantee an optimal solution. 
Thus, it has been commonly used to find an initial solution for further improvement using other 
optimization techniques. 

The NEH is based on the concept of inserting jobs into a sequence iteratively to minimize the 
makespan. Initially, it calculates the total processing time for each job by summing up the pro-
cessing times across all machines. Next, the jobs are sorted in decreasing order based on their 
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total processing times. For each job in the sorted order, it is inserted at all possible positions in 
the sequence, and the resulting makespan is evaluated. Then, the position that yields the lowest 
makespan is chosen, and the job is inserted at that position. Herein, for population diversity, we 
used shortest processing time (SPT)-based list scheduling rules to obtain different solutions. The 
remaining initial population was randomly generated. 

• SPT1 with pi1 
• SPT2 with pi2 
• SPT3 with pi3 
• SPT4 with pi2 + pi3 
• SPT5 with pi1 + pi2 + pi3 

4.3 Selection 

The selection operation randomly selects chromosomes for the next generation. The chromo-
somes are selected with a selection probability proportional to their fitness values. This opera-
tion is analogous to the survival of the fittest in the theory of evolution and is referred to as the 
roulette method in the GA. Note that the performance of the roulette method has been demon-
strated in recent related studies [14, 21, 22]. Because the objective function should be mini-
mized, the inverse fi of the objective function value for each chromosome i in the population is 
computed, and the selection probability probi of each chromosome is obtained by probi = fi/∑j fj. 
The next population is composed based on the selection probabilities of the chromosomes. 

4.4 Crossover 

The crossover operation generates offspring by exchanging information about the selected pa-
rents. Various methods can be used for crossover, such as the one-point crossover and two-point 
crossover methods [14]. Hosseinabadi et al. [39] and Hasançebi and Erbatur [40] evaluated va-
rious crossover methods for genetic algorithms and found that a one-point crossover demon-
strated high performance in scheduling problems. Lee [14] reported that a one-point crossover 
demonstrated relatively high performance in a flow shop with queue time limits. Based on the 
existing research results, a one-point crossover was applied in this study. 

For each chromosome in the current population, if a randomly generated number (between 0 
and 1) is less than the probability of crossover pc, the chromosome is copied into a pool. They 
are then randomly paired and referred to as parents. For the parents (Parent1 and Parent2), a 
one-point crossover is applied to generate two offsprings (Offspring1 and Offspring2) using the 
following procedure: 

Step 0: Randomly select a crossover point from among the parent genes. 
Step 1: Offspring1 inherits genes up to the crossover point within Parent1. 
Step 2: Except for the genes that Offspring1 already contains, Offspring1 inherits genes from 

Parent2 in the order in which they appear in Parent2. 
Step 3: Offspring2 is generated in the same manner in Steps 1 and 2. 

4.5 Mutation 

The mutation is an operation that prevents premature convergence and maintains the diversity 
within a population. This operation partially mutates several genes in a chromosome with low 
probability. 

For each chromosome in the population, if a random number (between 0 and 1) is less than 
the mutation probability, the chromosome is mutated once. The mutated ones are also included 
in the population. In this study, two common methods were used, namely, insertion and ex-
change, with the same probability. Insertion selects a job at random and inserts it into a random-
ly selected position, whereas exchange interchanges two randomly selected jobs 

4.6 Local search 

We used a local search technique to improve the performance of the GA. To prevent a rapid in-
crease in the calculation time owing to the local search, it was only applicable to 10 % of the so-
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lutions in a population at each generation. In this study, insertion and exchange methods were 
used. In particular, insertion or exchange with the same probability was applied 3n times to the 
solution, where n is the number of jobs. If the new solution was superior to the current solution, 
the current solution was replaced. 

4.7 Entire procedure 

The proposed GA terminates when the maximum number of generations is reached; the overall 
flowchart is shown in Fig. 1. 
 

 
Fig. 1 Flowchart of the proposed GA 

5. Computational experiments 
To assess the performance of the proposed algorithms, we performed computational experi-
ments using instances generated as follows. The experiments encompassed various levels of the 
number of jobs, n = (10, 20, 30, 40, 50, 100, 150, and 200). The processing times p were generat-
ed from discrete uniform distributions within the range of [1, 50]. Additionally, the queue times 
were generated from three different distributions with a range of [1, w], where w = (30, 50, and 
70). Regarding the proportion of skipping jobs, we considered three levels of the proportion λ of 
skipping jobs, where λ = (0.3, 0.5, and 0.7), i.e., (0.3n, 0.5n, and 0.7n). For each combination of (n, 
w, and λ), ten instances were generated, resulting in a comprehensive set of experimental data. 

We coded the proposed algorithms using the Java programming language and conducted 
experiments on a personal computer equipped with an Intel Core i7-8700 CPU running at 
3.2GHz. To solve the MIP formulation, we used CPLEX 12.10, a commercial solver, with a 
maximum CPU time of 1,000 seconds to prevent excessive computation time. As for the propo-
sed GA, it terminated once the maximum number of generations was reached and returned the 
best solution found within the population. For each instance, the GA was run independently 30 
times, and a mode value from the 30 runs was used for the evaluation. 

Before evaluating the GA, we performed experimental calibration to improve its performance. 
In the calibration, we assumed n = 100, λ = 0.5, and w from [1, 50], which were the medium le-
vels of the considered problem instances. 

The GA contained four parameter types: population size S, number of generations G, 
probability of crossover pc, and probability of mutation pm. If the population size is excessively 
small, diverse solutions are not available. On the other hand, if the population size is excessively 
large, the time required for crossover and local search increases. Thus, excessive time is 
required to obtain a solution. Therefore, it is necessary to select an appropriate population size 
related to the number of jobs to be considered. In this study, the size of the population was set to 
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(𝜌𝜌 ∙ 𝑛𝑛) and a preliminary experiment was conducted for 𝜌𝜌 = 1, 2,…, 5. Considering the trade-off 
between the algorithm performance and calculation time, 𝜌𝜌 was set to 4. 

The proposed GA used the maximum number of generations G as the termination condition. 
Therefore, an appropriate number of generations was required. If G is excessively large, a signif-
icant amount of time is required to obtain a solution, whereas, if G is excessively small, it is 
highly probable that a solution close to the optimal solution will not be obtained. We tested 
{500, 1000, 1500, 2000, 2500, and 3000} for G. Thereafter, 1000 was set as the appropriate 
number of generations for the preliminary experiments. In particular, preliminary experiments 
were conducted on {0.3, 0.5, 0.7, and 0.9} for pc and {0.05, 0.1, 0.2, 0.3, and 0.4} for pm, which 
were set to 0.7 and 0.2, respectively. Note that because of the extensive range of potential com-
binations among the four types of parameters examined and the resulting substantial amount of 
data, this paper does not include the results of the preliminary tests. 

First, we tested the MIP performance using CPLEX. Table 2 lists the average CPU times of 
CPLEX with a computation time limit (1,000 s). As seen from the table, CPLEX shows a tendency 
to work well when the number of jobs skipping the first stage increased and the queue time li-
mits were loose, whereas CPU times increased in the opposite case. The level of difficulty can be 
estimated based on the problem situation. The CPU time increased significantly as the number of 
jobs increased. When n = 50, 100, 150, and 200, CLPEX did not obtain an optimal solution for 10, 
40, 79, and 89 instances (out of 90) within the time limit. 

Next, we evaluated the effectiveness of the simple heuristics used to generate the initial po-
pulation. Table 3 presents the average percentage error (PE), which is defined as 100 × (objA – 
objCPLEX) / objCPLEX for Algorithm A, where N in the names of the last six algorithms represents the 
NEH algorithm. As seen from the table, the six list scheduling rules provided solutions with large 
errors compared with those from CPLEX. However, the proposed NEH algorithm demonstrated 
high performance. Every NEH algorithm obtained schedules with errors of approximately 2 % or 
less. Moreover, for instances with n = 150 and 200, schedules superior to those obtained from 
CPLEX were obtained. In addition, all NEH algorithms required less than 1 s. Thus, it was con-
firmed that an effective and efficient heuristic algorithm should be developed. 

In addition, we evaluated the performance of the proposed GA. In addition, to verify the effec-
tiveness of the local search, a GA without a local search (GAl-) was tested. Table 4 presents the 
performance in comparison with CPLEX, where NI and CPUT indicate the number of instances in 
which the GA and GAl- obtained a superior schedule to that obtained from CPLEX and the aver-
age computation time of the GAs, respectively. The relative deviation index (RDI) is defined as 
(objA – objmin) / (objmax – objmin), where objA is the objective value for Algorithm A, and objmin and 
objmax are the minimum and maximum objective values, respectively. As shown in the table, the 
effectiveness of the GA was demonstrated more clearly as the number of jobs increased. For all 
instances with n = 150 and 200, the GA obtained a solution that was superior to that obtained by 
CPLEX. The performance of the GA was improved using local search. Although the calculation 
time increased owing to the inclusion of the local search, the average CPUT was 87 s for n = 200, 
which is practicable. 

Table 2 CPU times of CPLEX 
λ w n=10 20 30 40 50 100 150 200 

0.3 30 0.08 231.62 378.25 277.15 688.18 984.75 1000 1000 
 50 0.06 0.53 3.95 144.09 313.47 547.89 1000 1000 
 70 0.05 0.14 0.31 3.31 39.78 571 940.44 1000 

0.5 30 0.06 64.17 4.9 169.36 140.77 818.78 1000 1000 
 50 0.04 0.25 3.32 21.56 59.21 432.6 933.92 1000 
 70 0.03 0.13 0.89 12.95 12.35 529.04 953.12 1000 

0.7 30 0.06 0.46 2.83 111.82 44.83 411.79 852.79 972.94 
 50 0.03 0.13 0.89 12.95 12.35 529.04 953.12 1000 
 70 0.04 0.09 0.19 10.08 2.62 254.99 804.98 1000 
 

 
Finally, we evaluated the performance of the GA concerning different problem parameters (λ 

and w) for instances with n = 100. The results are summarized in Table 5, which presents the 
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average PE values. When both parameters decreased, the PE values also decreased. This indi-
cates that the GA was effective when the limited queue times were strict and the number of jobs 
that skipped the first stage decreased. Problems with these features are more difficult than 
others; thus, CPLEX failed to find an optimal or adequate solution to these problems. It should be 
noted that if λ and w are zero, the problem transforms into a three-machine no-wait flow shop 
and into a two-machine flow shop problem if both parameters increase. 

6. Conclusion 
This study investigated a flow shop scheduling problem specifically focusing on the incorporati-
on of queue time limits and skipping jobs, which are critical requirements in semiconductor ma-
nufacturing. To address this problem, this study proposed a MIP formulation and GA. Computa-
tional experiments were carried out to assess the performance of both the MIP and GA, with a 
particular emphasis on evaluating the effectiveness and efficiency of the GA. The results demon-
strated that as the problem size increased, the GA exhibited improved performance and mainta-
ined an acceptable computation time within a real fab facility. Additionally, the GA's performan-
ce was verified under various conditions of queue time limits and skipping jobs. 

However, it should be noted that in certain conditions during the computational experiments, 
the GA failed to achieve an optimal solution. Thus, future endeavors should be directed toward 
enhancing the performance of the GA. Potential approaches for improvement include exploring 
alternative heuristic algorithms such as state-of-the-art metaheuristics, genetic programming-
based algorithms, or machine learning-based algorithms. Furthermore, it is worth considering 
the integration of bi-objective optimization approaches, incorporating measures based on both 
makespan and due dates, as the semiconductor business often follows an order-based manufa-
cturing paradigm. Additionally, future research can explore different types of queue time limits, 

Table 3 Percent errors of heuristic algorithm 
 n=10 20 30 40 50 100 150 200 average 

SPT1 19.23 22.32 21.97 23.99 24.72 25.83 24.58 22.73 23.17 
SPT2 22.41 23.11 22.41 22.99 23.76 24.73 23.64 21.55 23.08 
SPT3 30.00 29.28 27.43 27.21 27.68 27.53 25.59 23.19 27.24 
SPT4 21.91 20.44 18.86 17.84 18.54 17.62 15.92 14.06 18.15 
SPT5 17.05 17.02 14.94 15.54 15.97 16.36 15.12 13.30 15.66 
LPT 25.60 22.53 19.93 19.10 18.80 17.72 16.03 14.10 19.23 

SPT1N 1.65 1.23 1.13 1.18 1.19 0.89 -0.54 -2.14 0.57 
SPT2N 2.12 2.00 1.49 1.69 1.48 0.72 -0.76 -2.36 0.80 
SPT3N 2.33 2.03 1.55 1.49 1.37 0.72 -0.86 -2.41 0.78 
SPT4N 1.91 1.33 0.99 0.75 0.64 -0.21 -1.81 -3.35 0.03 
SPT5N 1.50 1.06 0.72 0.81 0.60 -0.08 -1.60 -3.31 -0.04 
LPTN 1.31 0.74 0.43 0.35 0.15 -0.43 -1.98 -3.57 -0.37 

 
Table 4 Performance of the proposed GA 

n PE (%)  NI  CPUT (s)  RDI 
GA GAl-  GA GAl-  GA GAl-  GA GAl- CPLEX 

10 0.144 0.281  75 54  0.0 0.0  0.134 0.393 0.000 
20 0.106 0.243  81 47  0.2 0.1  0.076 0.476 0.000 
30 0.039 0.144  82 54  0.5 0.1  0.052 0.400 0.000 
40 0.065 0.129  75 48  1.0 0.3  0.121 0.472 0.022 
50 -0.050 0.010  82 57  1.8 0.4  0.068 0.393 0.108 

100 -0.554 -0.532  89 76  12.1 1.8  0.011 0.181 0.444 
150 -2.071 -2.054  90 90  38.0 4.6  0.000 0.010 0.878 
200 -3.612 -3.608  90 90  87.3 9.3  0.000 0.001 0.989 

 
Table 5 Percent errors of the proposed GA on different parameters (n = 100) 

w λ average 30 50 70 
0.3 -2.377 -0.499 -0.360 -1.079 
0.5 -1.185 -0.261 -0.043 -0.496 
0.7 -0.097 -0.157 -0.004 -0.086 

average -1.220 -0.306 -0.136 -0.554 
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including overlapping queue time limits as presented in [11] and generalized skipping jobs that 
possess the ability to skip any stage. Lastly, extending the investigation of this problem to hybrid 
flow shops with multiple machines at each stage could be a valuable direction for future research. 
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