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A B S T R A C T A R T I C L E   I N F O 
To optimize urban logistics networks, this paper proposes a multi-objective op-
timization model for urban logistics distribution networks (ULDN). The model 
optimizes vehicle usage costs, transportation costs, penalty costs for failing to 
meet time windows, and carbon emission costs, while also considering the im-
pact of urban road traffic congestion on total costs. To solve the model, a DPSO 
(Discrete Particle Swarm Optimization) algorithm based on the basic principle 
of PSO (Particle Swarm Optimization) is proposed. The DPSO introduces mul-
tiple populations to handle multiple targets and uses a variable neighbourhood 
search strategy to improve the search ability of particles, which helps to improve 
the local search ability of the algorithm. Simulation results demonstrate the ef-
fectiveness of the proposed model in avoiding traffic congestion, reducing car-
bon emissions costs, and time penalty costs. The optimization comparison re-
sults between DPSO and PSO also verify the superiority of the DPSO algorithm. 
The proposed model can be applied to real-world urban logistics networks to 
improve their efficiency, reduce costs, and minimize environmental impact. 
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1. Introduction
As urban populations continue to grow, the demand for urban logistics services has increased 
significantly. The logistics industry plays a crucial role in the economic development of cities [1-6]. 
However, the development of urban economies and the increase in private cars have led to in-
creased traffic congestion, which has added pressure to the urban transportation network. Logis-
tics companies must not only deal with traffic congestion during distribution, but also meet in-
creasingly strict time requirements from customers. To meet the growing demand for timely de-
livery services under complex and unstable urban traffic conditions, logistics companies must find 
ways to provide efficient and effective distribution services that meet customer needs. 
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In the process of urban logistics distribution, the shortest distance between two customer nodes 
is often not the most efficient route, especially under urban traffic conditions where the shortest 
distance route is often the most congested. To avoid congested sections, shorten delivery times, 
and respond to customer time needs, logistics companies require an optimized distribution net-
work. Improving the efficiency of logistics service delivery while meeting customer needs and en-
suring customer loyalty can not only improve the core competitiveness of enterprises, but also 
alleviate urban traffic congestion and improve the urban environment. 

In addition, environmental pollution caused by urban logistics activities has become a critical 
issue. Low-carbon logistics plays an important role in the low-carbon development of the envi-
ronment and provides an essential guarantee for economic and social low-carbon development. 
Therefore, logistics companies must address the environmental problems caused by urban logis-
tics activities. Green distribution is a necessary consideration for cities to optimize the overall 
logistics facility layout and distribution network. To optimize urban logistics networks, it is essen-
tial to consider both traffic congestion and green distribution, as it can improve the economic ben-
efits of logistics enterprises while reducing the carbon emissions generated in the process of lo-
gistics distribution. 

This paper proposes an urban logistics network optimization model that considers the impact 
of traffic congestion on urban logistics distribution. The model aims to minimize vehicle usage 
costs, transportation costs, time penalty costs, and carbon emission costs. To solve the model, we 
introduce an improved discrete particle swarm optimization (DPSO) algorithm that introduces 
multiple populations to handle multiple targets and uses a variable neighbourhood search strat-
egy to enhance the search ability of particles and improve the local search ability of the algorithm. 
Simulation experiments verify the effectiveness of the proposed model and the superiority of the 
DPSO algorithm. 

2. Literature review 
The vehicle routing problem (VRP) is a fundamental problem in the optimization of urban logistics 
networks. Since its inception in 1945, numerous research studies have been published [7-15]. 
Gulczynski et al. [16] proposed a vehicle routing problem based on batch delivery and developed 
a heuristic method to solve the problem. Contardo and Martinelli [17] studied the multi-site vehi-
cle routing problem with capacity and routing length constraints and designed a new exact algo-
rithm to solve the problem. Bertazzi and Secomandi [18] focused on vehicle routing problems 
with random demand and replenishment and introduced a new method to approximate the ex-
pected cost of any VRPSD with replenishment. 

In recent years, research on VRP has become more diverse, with scholars proposing models to 
optimize different aspects of logistics transportation. For example, Islam et al. [19] studied the 
Clustered Vehicle Routing Problem (CluVRP) and proposed a new hybrid meta-heuristic algo-
rithm combining particle swarm optimization (PSO) and variable neighbourhood search (VNS) to 
solve the model. Solomon and Desrosiers [20] incorporated the concept of time windows into ve-
hicle routing problems, and Jabali et al. [21] proposed a vehicle routing problem with soft and 
hard time windows. Rodríguez-Martín and Yaman [22] developed a periodic vehicle routing prob-
lem with driver consistency, and Yuan et al. [23] studied the generalized vehicle routing problem 
with time windows. Zhao et al. [24] considered the departure time and the distance between two 
customers. They proposed a bi-objective mixed integer linear model to optimize the total trans-
portation cost and time cost. 

The Green Vehicle Routing Problem has gained significant attention in recent years, aiming to 
promote green development by reducing energy consumption and carbon emissions in logistics 
activities. Scholars have proposed various models to optimize different aspects of logistics trans-
portation while reducing carbon emissions. For example, Demir et al. [25] compared and analyzed 
six models for carbon emissions and energy consumption. Kirschstein and Meiselb [26] designed 
a comprehensive carbon emission calculation model by considering factors such as vehicle speed, 
load, and road conditions. Naderipur and Alinaghian [27] studied low carbon VRP with the goal of 
reducing vehicle energy consumption and carbon emissions. Kwon et al. [28] proposed a multi-



An improved discrete particle swarm optimization approach for a multi-objective optimization model of an urban … 
 

Advances in Production Engineering & Management 18(2) 2023 213 
 

vehicle VRP model based on carbon emissions to minimize total cost. Suzuki [29] established a 
VRP model aimed at minimizing energy consumption and carbon emissions. Li et al. [30] con-
structed a VRP model that aimed to minimize the sum of vehicle fixed usage costs, fuel consump-
tion, and carbon emissions costs. Wen et al. [31] proposed a multi-site model of vehicle routing to 
optimize carbon emissions, fuel consumption, vehicle rental, and driver wage costs. They devel-
oped an improved adaptive large neighbourhood search (ALNS) algorithm to effectively solve the 
problem. Guo et al. [32] studied the multi-compartment vehicle routing problem considering car-
bon emissions and optimized the total transportation cost, including carbon emissions, using a 
three-dimensional ant colony optimization algorithm (TDACO). Li and Li [33] proposed a multi-
objective supply chain network optimization model that aimed to optimize network costs, carbon 
trading costs, and customer satisfaction losses. They developed a new improved NSGA-II algorithm 
to solve the model. Zhu et al. [34] established a CVR for multiple warehouses with the goal of min-
imizing the carbon emissions of the fleet required to deliver the required goods to customers. 

Despite the significant progress made in the field of the Green Vehicle Routing Problem, there 
is still a need for more effective and comprehensive models that can address the challenges posed 
by traffic congestion and low-carbon emission reduction in urban logistics network optimization. 
Therefore, this paper proposes a new model and algorithm to address these gaps in the literature, 
which has practical significance for the development of low-carbon logistics and the improvement 
of urban traffic congestion. Urban traffic networks have time-varying characteristics due to fac-
tors such as morning and evening traffic peaks, road speed limits, traffic regulations, and external 
accidents. To address this, some scholars have studied time-dependent vehicle routing problems 
(TDVRP) under time-varying road networks. For example, Jabbarpour et al. [35] established a 
TDVRP model that aimed to minimize driving time and fuel consumption, and designed different 
traffic congestion scenarios for experiments. Xiao and Konak [36] proposed that highway trans-
portation companies can reduce their CO2 emissions through effective vehicle routing and deliv-
ery schedules based on traffic congestion in their service areas. Poonthalir and Nadarajan [37] 
focused on behavior in variable speed environments and its impact on route costs and fuel con-
sumption. They built a TDVRP model that aimed to minimize vehicle travel distance and fuel con-
sumption and designed an improved particle swarm optimization algorithm to solve the problem. 
Çimen and Soysal [38] considered the vehicle routing problem under time-dependent and random 
vehicle speeds. The research results showed that incorporating vehicle speed randomness into 
the model enabled optimization of the final distribution route in terms of travel duration, carbon 
emissions, and travel costs. Ehmkea et al. [39] constructed a TDVRP model that aimed to minimize 
carbon emissions and solved it using a tabu search algorithm. Sarbijan and Behnamian [40] pro-
posed that in the context of congestion in urban transportation networks, there is a higher re-
quirement for fast, flexible, reliable, and low-cost delivery in urban areas. In real-time collabora-
tive regional vehicle routing problems with flexible time windows, a combination of urban logis-
tics transportation and distribution composed of various vehicles can reduce the number of times 
to return to physical warehouses, reduce costs, and save time. 

Through a comprehensive literature review, scholars have proposed various models to ad-
dress the challenges posed by time-varying road networks in urban logistics transportation. How-
ever, there is still a need for more effective and comprehensive models that can address the chal-
lenges posed by traffic congestion, low-carbon emission reduction, and time-varying road net-
works in urban logistics network optimization. Therefore, this paper proposes a new model and 
algorithm to address these gaps in the literature, which has practical significance for the develop-
ment of low-carbon logistics and the improvement of urban traffic congestion. Through a compre-
hensive literature review, it was found that some research results have been generated on the 
Vehicle Routing Problem (VRP) under traffic congestion. However, the existing research is limited 
to constant vehicle speed, and there is a lack of research on VRP under time-varying road net-
works. Additionally, there is a shortage of research on the impact of traffic congestion and low-
carbon emission reduction on urban logistics network optimization. 

To address these gaps in the literature, this paper proposes a new multi-objective urban logis-
tics network optimization model that considers traffic congestion to optimize vehicle usage costs, 
transportation costs, penalty costs, and carbon emission costs. The proposed model takes into 
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account the impact of time-varying road networks and the need for low-carbon logistics. To solve 
the model, a DPSO algorithm based on the basic principle of PSO is developed. 

This research has practical significance for the development of low-carbon logistics and the 
improvement of urban traffic congestion. By optimizing vehicle routing and reducing carbon 
emissions, this research can help reduce the negative impact of logistics activities on the environ-
ment and promote sustainable development. Moreover, the proposed model and algorithm can 
provide valuable guidance for logistics companies and transportation departments in urban areas 
to optimize their logistics network and reduce transportation costs. 

3. Optimization model of vehicle routing problem in urban logistics 
distribution networks 
3.1 Problem description 

In today's low-carbon economic environment, it is crucial to consider not only conventional costs 
such as vehicle usage costs, transportation costs, and penalty costs for failing to meet the time 
window in urban logistics distribution but also the carbon emission costs associated with trans-
portation. Additionally, the impact of urban road traffic conditions on total costs should also be 
considered. Therefore, this paper proposes a new model for the Vehicle Routing Problem (VRP) 
in Urban Logistics Distribution Networks (ULDN), which takes into account traffic congestion. The 
problem can be described as a distribution center providing logistics distribution services to mul-
tiple customer points within a specified time. The goal of the proposed model is to comprehen-
sively optimize vehicle usage costs, transportation costs, time penalty costs, and carbon emissions 
costs in ULDN. The customer location, customer demand, and time window are known, and the 
urban traffic congestion period and traffic congestion status can be obtained from the transporta-
tion department. 

The proposed model and algorithm will provide valuable guidance for logistics companies and 
transportation departments in urban areas to optimize their logistics network and reduce trans-
portation costs while considering the impact of traffic congestion and low-carbon emissions. By 
reducing carbon emissions and optimizing vehicle routing, this research can help mitigate the 
negative impact of logistics activities on the environment and promote sustainable development. 

3.2 Assumptions 

In the proposed model, the following assumptions are made: 

(1) Only one distribution center with sufficient supply is considered. 
(2) The delivery vehicles are of the same type and depart from the logistics center at different 

times as needed, returning to the same logistics center afterward. 
(3) Customer demand is less than the vehicle capacity, and there is a service time window 

requirement. 
(4) During periods of traffic congestion, vehicles travel at a congested speed, while during non-

congested periods, vehicles travel at normal speeds. 
(5) The maximum load capacity of each vehicle is fixed, and each customer is served by only 

one vehicle. 
(6) Vehicles generate carbon emissions during driving time and do not generate carbon 

emissions during the rest of the time. 

By considering these assumptions, the proposed model provides a practical and realistic approach 
for logistics companies and transportation departments to optimize their logistics network while 
reducing carbon emissions and transportation costs. The proposed model and algorithm can be 
used to guide logistics companies in making informed decisions on vehicle routing and scheduling, 
ultimately improving the efficiency and sustainability of urban logistics distribution networks. 
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3.3 Notations 

I Set of customers 
I’ Set of all nodes in the urban logistics distribution network 
J Set of routes 
K Set of vehicles 
N Set of road section 
fk  Fixed departure cost of vehicles k 
tijkn The time consumed by the vehicle k traveling on road segment n in road (i, j) 
O Unit time cost of vehicle usage 
D Unit human resource cost of vehicles 
Q Maximum vehicle load capacity 
qi The demand for customer i; 
cti Unloading service time at customer i 
Tik Waiting time for vehicle k to arrive at customer i in advance 
vijkn The traveling speed of the vehicle k in the section n of the road (i, j) 
tijkn The time consumed by the vehicle k traveling on road segment n in road (i, j) 
βijkn Carbon emission rate of vehicle k in section n of road (i, j) (kg/km) 
dijkn The distance travelled by vehicle k in section n of road (i, j) 
δ Unit carbon emission cost (yuan/kg) 
g Unit fuel consumption cost (yuan/L); 
θijkn The fuel consumption rate of the vehicle k in the section n of the road (i, j) (L/km) 
RTik The time when the vehicle k arrives at the customer i 
LTik The time when the vehicle k leaves the customer i 
[Ej, Lj] The service time window for customer i 
αde The penalty factor when the vehicle arrives early 
αdl The penalty factor when the vehicle arrives late 
λij Traffic congestion coefficient 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = �10
   If vehicle k  travel in the path (i,j)  

otherwise
𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐼𝐼,𝑘𝑘 ∈ 𝐾𝐾 

 
𝑌𝑌𝑗𝑗𝑗𝑗 = �10

     If vehicle k  serves consumer j  
otherwise

𝑗𝑗 ∈ 𝐼𝐼,𝑘𝑘 ∈ 𝐾𝐾 
 
𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �10

     If vehicle k  travel in the path n  
otherwise

  i ∈ 𝐼𝐼,j ∈ 𝐽𝐽,k ∈ 𝐾𝐾,𝑛𝑛 ∈ 𝑁𝑁 
 
𝑟𝑟𝑘𝑘 = �10

     If vehicle k  is used 
otherwise   𝑘𝑘 ∈ 𝐾𝐾 

3.4 Mathematical model 

With the rapid increase in urban cars, traffic congestion has become a common phenomenon in 
urban areas. The impact of traffic congestion on logistics delivery efficiency and quality makes it 
necessary to consider the space-time effect in ULDN. The shortest path between two customers 
should not be based on the shortest spatial distance but rather on the shortest time, which varies 
due to different road congestion conditions and vehicle speeds during different periods of time. 
To quantify the degree of road congestion, the paper introduces a traffic congestion coefficient λij. 
The speed on the road during congestion vc = vf/λij, where vf is the vehicle speed when the road is 
clear. When the vehicle travels on a sub-road section with a sufficiently short distance, the speed 
can be considered constant based on the actual situation and driving rules. 

In the proposed urban logistics network optimization model, the carbon emission cost, vehicle 
usage cost, transportation cost, and time penalty cost are considered. They are calculated as fol-
lows: 
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(1) Carbon emission cost 

Carbon emissions are mainly generated during vehicle transportation, and the carbon emission 
coefficient is used to calculate the carbon emissions during transportation. The carbon emission 
coefficient represents the unit carbon emissions of the logistics distribution, which quantifies the 
total carbon dioxide content in the logistics distribution. The carbon emission cost C1 is calculated 
using Eq. 1. 
 

𝐶𝐶1 = ��� �𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛∈𝑁𝑁𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐼𝐼𝑖𝑖∈𝐼𝐼

𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1) 
 

(2) Vehicle usage cost 

Vehicle usage costs mainly include vehicle departure costs, vehicle rental costs, and labour costs. 
The vehicle rental cost and labour cost are the product of the total travel time and unit cost. The 
total travel time is the sum of road travel time, customer service unloading time, and waiting time 
at the customer point. Therefore, the vehicle management usage cost C2 is calculated using Eq. 2. 
 

𝐶𝐶2 = �𝑟𝑟𝑘𝑘
𝑘𝑘∈𝐾𝐾

𝑓𝑓𝑘𝑘 + ��� �𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛∈𝑁𝑁𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐼𝐼𝑖𝑖∈𝐼𝐼

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑂𝑂 + 𝐷𝐷) + (��𝑦𝑦𝑗𝑗𝑗𝑗𝑐𝑐𝑐𝑐𝑗𝑗
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐼𝐼

+ ��𝑦𝑦𝑗𝑗𝑗𝑗𝑇𝑇𝑗𝑗𝑗𝑗
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐼𝐼

)(𝑂𝑂 + 𝐷𝐷) 
(2) 

 

(3) Transportation cost 

Transportation cost refers to the fuel consumption cost generated during vehicle transportation. 
The transportation cost C3 is calculated using Eq. 3. 
 

𝐶𝐶3 = ��� �𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛∈𝑁𝑁𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐼𝐼𝑖𝑖∈𝐼𝐼

𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (3) 
 

(4) Time penalty cost 

In the process of urban logistics distribution, scheduling errors, and low delivery efficiency may 
cause distribution vehicles to miss the specified delivery time. Such delays may negatively impact 
customers, such as supermarkets and shopping malls, which have their own business hours. De-
layed delivery times may increase the cost of the enterprise due to decreased customer satisfac-
tion, and penalties should be imposed accordingly. The penalty cost in the vehicle distribution is 
calculated using Eq. 4. 
 

𝐶𝐶4 = 𝛼𝛼𝑑𝑑𝑑𝑑��(𝐸𝐸𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 , 0) + 𝛼𝛼𝑑𝑑𝑑𝑑��(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 − 𝐿𝐿𝑖𝑖𝑖𝑖 , 0)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

 (4) 
 

By considering these costs, the proposed model and algorithm can provide valuable guidance for 
logistics companies and transportation departments in urban areas to optimize their logistics net-
work while reducing transportation costs and carbon emissions. The 𝐸𝐸𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  is the waiting 
time for vehicle k to arrive at customer i in advance, and 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 − 𝐿𝐿𝑖𝑖𝑖𝑖 is the waiting time for cus-
tomer i due to vehicle lateness. 

The objective function of the proposed VRP model in ULDN is constructed as follows: 
 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍1 = ��� �𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛∈𝑁𝑁𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐼𝐼𝑖𝑖∈𝐼𝐼

𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (5) 
 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍2 = �𝑟𝑟𝑘𝑘
𝑘𝑘∈𝐾𝐾

𝑓𝑓𝑘𝑘 + ��� �𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛∈𝑁𝑁𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐼𝐼𝑖𝑖∈𝐼𝐼

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑂𝑂 + 𝐷𝐷) + (��𝑦𝑦𝑗𝑗𝑗𝑗𝑐𝑐𝑐𝑐𝑗𝑗
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐼𝐼

+ ��𝑦𝑦𝑗𝑗𝑗𝑗𝑇𝑇𝑗𝑗𝑗𝑗
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐼𝐼

)(𝑂𝑂 + 𝐷𝐷) 
(6) 
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𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍3 = ��� �𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛∈𝑁𝑁𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐼𝐼𝑖𝑖∈𝐼𝐼

𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (7) 
 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍4 = 𝛼𝛼𝑑𝑑𝑑𝑑��(𝐸𝐸𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖, 0) + 𝛼𝛼𝑑𝑑𝑑𝑑��(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 − 𝐿𝐿𝑖𝑖𝑖𝑖 , 0)
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼

 (8) 
 

Subject to 
 

�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 1
𝑘𝑘∈𝐾𝐾

,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐽𝐽 (9) 
 

�𝑦𝑦𝑗𝑗𝑗𝑗 = 1
𝑘𝑘∈𝐾𝐾

,∀𝑗𝑗 ∈ 𝐼𝐼 (10) 
 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐽𝐽,𝑘𝑘 ∈ 𝐾𝐾,ℎ ∈ 𝐻𝐻 (11) 
 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ ∑ 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛∈𝑁𝑁 ,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐽𝐽,𝑘𝑘 ∈ 𝐾𝐾  (12) 
 

� �𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛∈𝑁𝑁𝑘𝑘∈𝐾𝐾

= 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐽𝐽,𝑘𝑘 ∈ 𝐾𝐾,𝑛𝑛 ∈ 𝑁𝑁 (13) 
 

�𝑥𝑥0𝑗𝑗𝑗𝑗 ≤ 1
𝑗𝑗∈𝐼𝐼′

,∀𝑘𝑘 ∈ 𝐾𝐾 (14) 
 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐽𝐽,𝑘𝑘 ∈ 𝐾𝐾,𝑛𝑛 ∈ 𝑁𝑁 (15) 
 

�𝑞𝑞𝑗𝑗
𝑗𝑗∈𝐽𝐽

𝑦𝑦𝑗𝑗𝑗𝑗 ≤ 𝑄𝑄,∀𝑘𝑘 ∈ 𝐾𝐾 (16) 
 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}  (17) 
 

𝑦𝑦𝑗𝑗𝑗𝑗 ∈ {0,1}  (18) 
 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}  (19) 
 

𝑟𝑟𝑘𝑘 ∈ {0,1}  (20) 
 

Eq. 9 indicates that only one vehicle is allowed to drive on the selected road. Eq. 10 indicates that 
each customer can only be served by one vehicle, and all customers must be served. Eqs. 11 and 
12 represent the limiting relationship between variables xijk and Uijkn. Eq. 13 indicates that the ve-
hicle should travel the entire road as long as the road is selected. Eq. 14 indicates that each vehicle 
is only used once. Eq. 15 represents the restriction relationship between dijkn and dij. Eq.16 repre-
sents vehicle capacity constraints. Eqs. 17-20 represent variable value constraints. 

By considering these constraints and the objective function, the proposed model and algorithm 
can optimize vehicle usage costs, transportation costs, time penalty costs, and carbon emissions 
costs in ULDN while considering traffic congestion. This approach can help logistics companies 
and transportation departments in urban areas to optimize their logistics network and reduce 
transportation costs and carbon emissions, ultimately promoting sustainable development. 

4. Improved Discrete Particle Swarm Optimization 
The Particle Swarm Optimization (PSO) is a global optimization algorithm based on swarm intel-
ligence, which was proposed by American scholars Kennedy and Eberhart [41]. The PSO algorithm 
simulates the social behaviour of animal groups, such as flocks of birds and fish, by following three 
typical rules: 1) Fly away from the nearest individual to avoid collisions; 2) Fly towards a prede-
termined goal; 3) Fly to the center of the group. For example, a flock of birds usually determines 
its flight direction and speed based on its own flight experience, which leads to consistent flock 
behavior. However, when one bird in the group changes direction and flies to a new habitat, other 
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birds will also be affected and fly to the new habitat, causing the remaining birds to imitate this 
behaviour until they all fall into the new habitat. 

In the PSO algorithm, each possible solution in a population is represented as a particle without 
volume or mass. All such particles fly at a certain speed in the search space, and their speed is 
derived from past flight experience. The PSO algorithm enables the entire population to develop 
towards global optimization through information sharing among particles. It has the ability to 
search multiple points and can obtain multiple Pareto optimal solutions through one operation. 
Therefore, the advantages of the PSO algorithm are suitable for solving multi-objective optimiza-
tion problems in urban logistics networks. 

To further improve the PSO algorithm, the paper proposes an improved discrete particle 
swarm optimization algorithm (DPSO) to solve the VRP model in ULDN. The DPSO algorithm uses 
multiple populations to process multiple targets and develops a variable neighbourhood search 
strategy to improve the search ability of particles. The DPSO conducts a randomized deep search 
to improve the "premature convergence" problem of the PSO algorithm, which improves the qual-
ity of understanding. 

(1) Coding of the DPSO 

To implement the DPSO algorithm for solving the VRP model in ULDN, the solution space of VRP 
in ULDN is represented by a directed complete graph, denoted as G = (V, E), where each potential 
solution is a generated subgraph of G. The search space of the entire particle swarm is the arc set 
E in the complete graph G. The position of each particle is represented by a set consisting of arcs, 
forming a subset A. The search space of the particle swarm is the edge set of the directed complete 
graph of urban logistics distribution customer nodes. The position of a particle is a subset of the 
edge set of a complete graph, and the edges in this subset are connected end-to-end to form a 
directed Hamilton loop, serving as the distribution path for logistics vehicles. 

The speed of a particle is a collection of all nodes, and edges in the speed collection may be 
selected to build a new location for the particle. Each element in the individual is converted to a 
number in the floating point interval [0,1]. The velocities of all particles are calculated, and then 
the element is converted to an integer based on the relative position index. 

(2) Particle position update 

The DPSO algorithm for solving the VRP model in ULDN uses n candidate solutions to find the op-
timal solution in the search space. The position vector corresponding to the particle is represented 
by 𝑋𝑋𝑖𝑖 = [𝑥𝑥𝑖𝑖0,𝑥𝑥𝑖𝑖1, . . . , 𝑥𝑥𝑖𝑖𝑛𝑛], where each dimension of X is represented by 𝑥𝑥𝑖𝑖𝑑𝑑 = [(𝑚𝑚,𝑑𝑑), (𝑑𝑑,𝑘𝑘)],𝑚𝑚,𝑑𝑑 ∈
{0,1, . . . ,𝑑𝑑 − 1,𝑑𝑑 + 1,𝑛𝑛},𝑚𝑚 ≠ 𝑘𝑘. Each individual in the population represents a feasible solution, 
and 𝑥𝑥𝑖𝑖𝑑𝑑 is composed of two arcs connected by customer d. n is the total dimension (total number 
of customers), d represents the current dimension index, m is the predecessor node of customer t 
(the customer served before customer t), and k is the successor node of customer t (the customer 
served after customer t). Eq. 21 is used to update the position of particles. 
 

𝑣𝑣𝑖𝑖𝑑𝑑(𝑡𝑡 + 1) = 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑐𝑐1 × 𝑟𝑟1 × (𝑝𝑝𝑏𝑏𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)) + 𝑐𝑐2 × 𝑟𝑟2 × (𝑔𝑔𝑏𝑏𝑑𝑑(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)) (21) 
 

The velocity of particle i in the d-th dimension at the t-th iteration is represented as vid(t)∈R, 
and PBi(t) = (pbi1(t), pbi2(t),… , pbid(t),… , pbiD(t)) is the position of the individual historical extreme 
value of particle i up to the t iteration. GB(t) =  (gb1(t), gb2(t),… , gbd(t),… , gbD(t)) is the best 
position experienced by all particles in the population up to the t iteration. Each particle updates 
its own velocity and location based on individual historical extremum and global optimal value. 
The t represents the t-th search, Vi(t) represents the speed of the i-th particle, Xi(t) is the current 
position of the i-th particle, r1 and r2 are random numbers between (0,1), and the constants c1 and 
c2 are learning factors, usually taking the same value between 0 and 2. 

(3) Particle Speed Update 

In the DPSO algorithm for solving the VRP model in ULDN, when the optimization value of particle 
i changes very little, the speed of the particle is updated according to Eq. 22, where αi defines the 
historical optimal value of particle i. For each dimension of each particle in the D-dimensional 



An improved discrete particle swarm optimization approach for a multi-objective optimization model of an urban … 
 

Advances in Production Engineering & Management 18(2) 2023 219 
 

space, the corresponding dimension of the historical optimal value of one particle is selected from 
all particles according to a certain probability to learn. Thereby, a learning particle is constructed 
randomly for each particle i. Each dimension of each particle in the population learns from the 
optimal solution set with a probability p. 

The particle speeds are updated by Eqs. 22 and 23, where Gbest is the optimal solution set, and 
G is the number of candidate solutions in the optimal solution set, which is equal to the number of 
population sizes. 
 

𝑉𝑉𝑖𝑖𝑑𝑑 = 𝑤𝑤 × 𝑉𝑉𝑖𝑖𝑑𝑑 + 𝑐𝑐 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑑𝑑 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑓𝑓𝑖𝑖(𝑑𝑑)
𝑑𝑑 − 𝑋𝑋𝑖𝑖𝑑𝑑�  (22) 

 

𝜌𝜌𝐶𝐶𝑝𝑝 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 ∙ 𝛻𝛻𝛻𝛻� = 𝛻𝛻(𝑘𝑘𝑘𝑘𝑘𝑘) + 𝜂𝜂𝛾̇𝛾2 (23) 
 

(4) Variable neighbourhood search 

During the operation of PSO, particle swarm optimization may quickly approach the current opti-
mal position of the population, which can lead to weak global search ability and the "premature 
convergence" phenomenon. To address this issue, the DPSO algorithm utilizes variable neighbour-
hood search local search operators, which can expand the local search space and improve the 
quality of individual search, thereby improving the group optimization ability. 

In the DPSO algorithm for solving the VRP model in ULDN, the vehicle route that passes through 
the least number of customers is selected to determine the individual and global extrema. Then, 
under certain hypothetical conditions, the customer closest to the current route is selected to be 
inserted, and it is determined whether at least that customer exists in another vehicle route. If it 
exists, the location where the total logistics cost of the new route is the smallest is selected, and if 
it does not exist, it will not be inserted. The optimal solution set is updated after completing the 
above operation. 

 
Fig. 1 Algorithm steps of DPSO 

 
The specific steps of variable domain search are as follows: 

For L1(s): 
Step 1: Select a path R randomly. 
Step 2: Select two nodes N1 and N2 in path R randomly. 
Step 3: Exchange N1 and N2. 



Li, Li, Ma 
 

220 Advances in Production Engineering & Management 18(2) 2023 
 

For L2(s)： 
Step 1: Select two paths R1 and R2 randomly. 
Step 2: Select a node N1 randomly in path R1, and select a node N2 randomly in path R2. 
Step 3: Exchange N1 and N2. 

For L3(s)： 
Step 1: Select the path R with the lowest bearing capacity. 
Step 2: Insert the customers in the distribution path R into other distribution paths. 

(5) Algorithm Steps 
The DPSO steps is as follows: 
Step 1: Initialize the particle population and initialize each particle randomly. 
Step 2: Update the speed and position of each particle. 
Step 3: Local search on the optimal solution set. 
Step 4: Update the optimal solution set. If the stop condition is not satisfied, return to Step 2 to 
continue optimizing the population. 
Step 5: Terminate the entire algorithm and obtain the optimal solution set. The specific steps 
are shown in Fig. 1. 

5. Simulation 
Based on the urban logistics distribution data of a logistics enterprise in Shanghai, the DPSO algo-
rithm is applied to optimize the logistics network. The logistics enterprise distributes products to 
various consumers in Shanghai, and has one logistics distribution center that needs to meet the 
distribution needs of 50 stores and supermarkets (customers). The number 0 refers to the logis-
tics distribution center, and the numbers 1-50 refer to the consumers. 

The initial time is set as 6:00 a.m., and this time is set as 0 o'clock in the model. According to 
urban traffic laws, the time periods between 7:00 to 9:00 and 17:00 to 19:00 are considered as 
traffic congestion periods, and the rest of the time periods are considered as normal driving peri-
ods. Under a time-varying network, the normal driving speed vf is 60 km/h, and the speed vc dur-
ing congestion is 30 km/h. The vehicle has an unloaded weight of 5000 kg and a capacity of 2t. 

The values of other parameters are shown in Table 1. The parameters of the DPSO algorithm 
are set as follows: the population size is 50, the number of iterations is 100, w = 0.7, c1 = c2 = 1.5, 
r1 = r2 = 0.5. 

The simulation experiment using the DPSO algorithm to optimize the logistics network of a 
logistics enterprise in Shanghai took 180.2 s to execute. Seven vehicles were used for distribution, 
and the total distribution cost was 5240 yuan. The vehicle usage costs (vehicle startup and rental 
fees) were 2305 yuan, the transportation cost was 2638 yuan, the carbon emission cost was 103 
yuan, and the time penalty cost was 194 yuan. The optimization results are shown in Table 2. 

The optimization results indicate that the DPSO algorithm can obtain optimal routes in a rela-
tively short time. Vehicles 3 and 5 completely avoided the congestion period, while vehicles 1, 4, 
and 6 had two sections in the morning and evening peak congestion periods. Vehicle 2 had two 
sections in the morning and evening peak congestion period, and vehicle 7 had three sections in 
the morning and evening peak congestion period. This indicates that the proposed DPSO algo-
rithm can reasonably avoid traffic congestion periods and improve vehicle delivery efficiency. 
 

Table 1 Parameters 
Parameters Value 

fk 130yuan/vehicle 
O 6yuan/h 
D 10yuan/h 
δ 0.5yuan/kg 
g 6yuan/L 

αde 10yuan/h 
αdl 10yuan/h 
vf 60km/h 
vc 30 km/h 
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Table 2 Optimization results of urban logistics distribution network 

Route Distribution route 
Number of routes 
during congestion 

periods 

Carbon 
emission 

cost 

Vehicle 
usage 
costs 

Transport-
ation cost 

Time 
penalty 

cost 

Total 
cost 

1 0-4-5-10-12-15-
20-21-0 1 11 286 325 26 648 

2 0-1-6-7-25-41-8-
16-44-0 2 15 355 410 45 825 

3 0-32-45-28-0 0 8 167 203 0 378 

4 0-14-2-17-19-49-
38-26-0 1 14 290 348 23 675 

5 0-42-31-23-3-9-
18-43-0 0 12 348 322 0 682 

6 0-22-11-13-34-
47-27-50-36-0 1 19 365 402 21 807 

7 
0-29-46-24-33-
35-30-39-40-48-
37-0 

3 24 494 628 79 1225 

 
Based on the comprehensive distribution route optimization results, it can be found that due 

to the constraints of urban congestion and customer service time windows, there are significant 
differences in the distribution routes. The maximum number of customers served by vehicle 7 is 
10, while the number of customers served by vehicle 3 is the lowest, with only 3. This is due to the 
different time windows at each customer, indicating that logistics enterprises should consider 
time dependence when planning their routes. Logistics enterprises should plan their routes sci-
entifically based on the actual conditions such as road network conditions and customer time win-
dows. 

In addition, the impact of traffic congestion on the optimization results of VRP in ULDN is illus-
trated in the paper. The traffic congestion coefficient λij is set to 1.5, 2.0, 2.5, and 3.0, with corre-
sponding congestion speeds of 40 km/h, 30 km/h, 24 km/h, and 20 km/h, while the normal driv-
ing speed vf remains unchanged at 60 km/h. The optimization results are shown in Table 3. 

Table 3 Optimization results for different traffic congestion coefficient 

Traffic congestion 
coefficient 

Number of 
delivery vehicles 

Carbon 
emission cost 

Vehicle 
usage costs 

Transportation 
cost 

Time 
penalty 

cost 

Total 
cost 

1.5 7 89 2260 2554 181 5084 
2.0 7 106 2302 2644 199 5251 
2.5 8 134 2377 2880 221 5612 
3.0 9 165 2456 3012 247 5880 

 

From the perspective of the optimization process of the DPSO algorithm, the optimal evolution 
iterations corresponding to different traffic congestion coefficients fluctuate slightly between 30 
and 45 generations after 100 iterations. Although the change in vehicle usage costs is not signifi-
cant, the optimal values of transportation costs, carbon emissions costs, and time penalty costs 
increase as the traffic congestion coefficient increases, leading to an increase in total costs. As the 
congestion coefficient increases, fuel consumption and carbon emissions increase, indicating that 
congestion conditions can affect the greenness of logistics delivery routes. The cost of time penalty 
increases, which indicates that traffic congestion can affect vehicle speed and affect the service 
time. 

Furthermore, the effectiveness of the DPSO algorithm is verified by comparing the optimiza-
tion results of DPSO with the basic PSO algorithm. The convergence of the two algorithms within 
100 iterations is obtained under the same parameter settings. The parameters of the algorithm 
are: the population size is 50, the number of iterations is 100, w = 0.7, c1 = c2 = 1.5, r1 = r2 = 0.5. 
The optimization results of DPSO and PSO are shown in Figure 2. 

The optimization results of the DPSO algorithm show that the minimum value of the total cost 
maintains an overall downward trend with the increase of genetic iterations. Meanwhile, the con-
vergence of the DPSO algorithm is significantly better than that of the PSO algorithm. The DPSO 
algorithm basically reaches the optimal solution around the 35th generation, while the PSO 
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algorithm converges to the optimal solution in the 80th generation, and its overall optimization 
cost is greater than that of the DPSO algorithm. This indicates the effectiveness of the DPSO algo-
rithm in optimizing the logistics network in ULDN and improving the efficiency of vehicle delivery. 

 
Fig. 2 Comparison of the optimal total cost  

6. Conclusions 
In this paper, we proposed a model of vehicle routing problem in urban logistics distribution un-
der traffic congestion, taking into account vehicle management costs, transportation costs, carbon 
emissions costs, and penalty costs comprehensively. To solve this complex multi-objective opti-
mization problem, we developed an improved DPSO algorithm based on the PSO, which uses mul-
tiple populations to process multiple targets, and incorporates a variable neighbourhood search 
strategy to improve the search ability of particles. The randomized deep search was also con-
ducted to improve the "premature convergence" problem of PSO, which improves the quality of 
optimization results. 

The simulation results showed that our proposed model can obtain the lowest cost and optimal 
delivery route, effectively avoiding traffic congestion, reducing carbon emissions costs and pen-
alty costs, and improving customer satisfaction. Comparative analysis of optimization results be-
tween the DPSO and the PSO showed that the proposed DPSO algorithm has better convergence 
and effectiveness in VRP of urban logistics distribution. 

Our proposed model and algorithm provide effective solutions and references for solving prac-
tical logistics distribution network optimization problems in urban areas with complex traffic con-
ditions. By optimizing delivery routes, logistics enterprises can reduce transportation costs, car-
bon emissions, and penalties, while improving customer satisfaction and promoting sustainable 
development in urban logistics. In summary, our study contributes to the field of urban logistics 
distribution and provides a valuable reference for future research in this area. The types of vehi-
cles and the dynamic changes in customer demand are not considered in the study. Future re-
search could introduce different types of delivery vehicles and dynamic changes in customer de-
mand in the delivery paths optimization. 
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[5] Sárdi, D.L., Bóna, K. (2021). City logistics analysis of urban areas: An analytic hierarchy process based study, Journal 
of System and Management Sciences, Vol. 11, No. 2, 77-105, doi: 10.33168/JSMS.2021.0206. 

[6] Song, Z., Wang, X. (2020). Contract coordination for green logistics capabilities involving the logistics service 
demand side, Environmental Engineering and Management Journal, Vol. 19, No. 9, 1519-1533, doi: 
10.30638/eemj.2020.142. 

[7] Dantzig, G.B., Ramser, J.H. (1959). The truck dispatching problem, Management Science, Vol. 6, No. 1, 80-91, doi: 
10.1287/mnsc.6.1.80. 

[8] Niu, X.Y., Liu, S.F., Huang, Q.L. (2022). End-of-line delivery vehicle routing optimization based on large-scale 
neighbourhood search algorithms considering customer-consumer delivery location preferences, Advances in 
Production Engineering & Management, Vol. 17, No. 4, 439-454, doi: 10.14743/apem2022.4.447. 

[9] Wang, Y.D., Lu, X.C., Song, Y.M., Feng, Y., Shen, J.R. (2022). Monte Carlo tree search improved genetic algorithm for 
unmanned vehicle routing problem with path flexibility, Advances in Production Engineering & Management, Vol. 
17, No. 4, 425-438, doi: 10.14743/apem2022.4.446. 

[10] Barros, L., Linfati, R., Escobar, J.W. (2020). An exact approach for the consistent vehicle routing problem (ConVRP), 
Advances in Production Engineering & Management, Vol. 15, No. 3, 255-266, doi: 10.14743/apem2020.3.363. 

[11] Wang, S.R., Huang, Q. (2022). A hybrid code genetic algorithm for VRP in public-private emergency collaborations, 
International Journal of Simulation Modelling, Vol. 21, No. 1, 124-135, doi: 10.2507/IJSIMM21-1-595. 

[12] Kunnapapdeelert, S., Thawnern C. (2021). Capacitated vehicle routing problem for Thailand’s steel industry via 
saving algorithms, Journal of System and Management Sciences, Vol. 11, No. 2, 171-181, doi: 
10.33168/JSMS.2021.0211. 

[13] Liu, S., Wang, Y. (2023). Dynamic simulation of differential driving cargo transport vehicle, Journal of Intelligent 
Management Decision, Vol. 2, No. 1, 38-45, doi: 10.56578/jimd020105. 

[14] Ismail, B., El Enin, M.A., Osama, M., Abdelhaleem, M., Geris, M., Kamel, M., Kassem, S., Fahim, I.S. (2021). A 
heterogeneous vehicle routing problem with soft time windows for 3PL company’s deliveries: A case study, Journal 
Européen des Systèmes Automatisés, Vol. 54, No. 6, 909-914, doi: 10.18280/jesa.540614. 

[15] Dabic-Miletic, S. (2023). Autonomous vehicles as an essential component of Industry 4.0 for meeting last-mile 
logistics requirements, Journal of Industrial Intelligence, Vol. 1, No. 1, 55-62, doi: 10.56578/jii010104. 

[16] Gulczynski, D., Golden, B., Wasil, E. (2010). The split delivery vehicle routing problem with minimum delivery 
amounts, Transportation Research Part E: Logistics and Transportation Review, Vol. 46, No. 5, 612-626, doi: 
10.1016/j.tre.2009.12.007. 

[17] Contardo, C., Martinelli, R. (2014). A new exact algorithm for the multi-depot vehicle routing problem under 
capacity and route length constraints, Discrete Optimization, Vol. 12, 129-146, doi: 10.1016/j.disopt.2014.03.001. 

[18] Bertazzi, L., Secomandi, N. (2018). Faster rollout search for the vehicle routing problem with stochastic demands 
and restocking, European Journal of Operational Research, Vol. 270, No. 2, 487-497, doi: 10.1016/j.ejor.2018.03.034. 

[19] Islam, M.A., Gajpal, Y., ElMekkawy, T.Y. (2021). Hybrid particle swarm optimization algorithm for solving the 
clustered vehicle routing problem, Applied Soft Computing, Vol. 110, Article No. 107655, doi: 
10.1016/j.asoc.2021.107655. 

[20] Solomon, M.M., Desrosiers, J. (1988). Survey paper – time window constrained routing and scheduling problems, 
Transportation Science, Vol. 22. No. 1, 1-13, doi: 10.1287/trsc.22.1.1. 

[21] Jabali, O., Leus, R., Van Woensel, T., De Kok, T. (2015). Self-imposed time windows in vehicle routing problems, OR 
Spectrum, Vol. 37, 331-352, doi: 10.1007/s00291-013-0348-1. 

[22] Rodrı́guez-Martı́n, I., Yaman, H. (2022). Periodic vehicle routing problem with driver consistency and service time 
optimization, Transportation Research Part B: Methodological, Vol. 166, 468-484, doi: 10.1016/j.trb.2022.11.004. 

[23] Yuan, Y., Cattaruzza, D., Ogier, M., Semet, F., Vigo, D. (2021). A column generation based heuristic for the generalized 
vehicle routing problem with time windows, Transportation Research Part E: Logistics and Transportation Review, 
Vol. 152, Article No. 102391, doi: 10.1016/j.tre.2021.102391. 

[24] Zhao, P.X., Luo, W.H., Han, X. (2019). Time-dependent and bi-objective vehicle routing problem with time windows, 
Advances in Production Engineering & Management, Vol. 14, No. 2, 201-212, doi: 10.14743/apem2019.2.322. 

[25] Demir, E., Bektaş, T., Laporte, G. (2011). A comparative analysis of several vehicle emission models for road freight 
transportation, Transportation Research Part D: Transport and Environment, Vol. 16, No. 5, 347-357, doi: 
10.1016/j.trd.2011.01.011. 

[26] Kirschstein, T., Meisel, F. (2015). GHG-emission models for assessing the eco-friendliness of road and rail freight 
transports, Transportation Research Part B: Methodological, Vol. 73, 13-33, doi: 10.1016/j.trb.2014.12.004. 

https://doi.org/10.1016/j.jclepro.2018.11.123
https://doi.org/10.24818/18423264/55.2.21.11
https://doi.org/10.56578/judm020101
https://doi.org/10.30638/eemj.2020.184
https://doi.org/10.33168/JSMS.2021.0206
https://doi.org/10.30638/eemj.2020.142
https://doi.org/10.30638/eemj.2020.142
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.14743/apem2022.4.447
https://doi.org/10.14743/apem2022.4.446
https://doi.org/10.14743/apem2020.3.363
https://doi.org/10.2507/IJSIMM21-1-595
https://doi.org/10.33168/JSMS.2021.0211
https://doi.org/10.33168/JSMS.2021.0211
https://doi.org/10.56578/jimd020105
https://doi.org/10.18280/jesa.540614
https://doi.org/10.56578/jii010104
https://doi.org/10.1016/j.tre.2009.12.007
https://doi.org/10.1016/j.tre.2009.12.007
https://doi.org/10.1016/j.disopt.2014.03.001
https://doi.org/10.1016/j.ejor.2018.03.034
https://doi.org/10.1016/j.asoc.2021.107655
https://doi.org/10.1016/j.asoc.2021.107655
https://doi.org/10.1287/trsc.22.1.1
https://doi.org/10.1007/s00291-013-0348-1
https://doi.org/10.1016/j.trb.2022.11.004
https://doi.org/10.1016/j.tre.2021.102391
https://doi.org/10.14743/apem2019.2.322
https://doi.org/10.1016/j.trd.2011.01.011
https://doi.org/10.1016/j.trd.2011.01.011
https://doi.org/10.1016/j.trb.2014.12.004


Li, Li, Ma 
 

224 Advances in Production Engineering & Management 18(2) 2023 
 

[27] Naderipour, M., Alinaghian, M. (2016). Measurement, evaluation and minimization of CO2, NOx, and CO emissions 
in the open time dependent vehicle routing problem, Measurement, Vol. 90, 443-452, doi: 
10.1016/j.measurement.2016.04.043. 

[28] Kwon, Y.-J., Choi, Y.-J., Lee, D.-H. (2013). Heterogeneous fixed fleet vehicle routing considering carbon emission, 
Transportation Research Part D: Transport and Environment, Vol. 23, 81-89, doi: 10.1016/j.trd.2013.04.001. 

[29] Suzuki, Y. (2016). A dual-objective metaheuristic approach to solve practical pollution routing problem, 
International Journal of Production Economics, Vol. 176, 143-153, doi: 10.1016/j.ijpe.2016.03.008. 

[30] Li, J., Wang, D., Zhang, J. (2018). Heterogeneous fixed fleet vehicle routing problem based on fuel and carbon 
emissions, Journal of Cleaner Production, Vol. 201, 896-908, doi: 10.1016/j.jclepro.2018.08.075. 

[31] Wen, M., Sun, W., Yu, Y., Tang, J., Ikou, K. (2022). An adaptive large neighborhood search for the larger-scale multi 
depot green vehicle routing problem with time windows, Journal of Cleaner Production, Vol. 374, Article No. 
133916, doi: 10.1016/j.jclepro.2022.133916. 

[32] Guo, N., Qian, B., Na, J., Hu, R., Mao, J.-L. (2022). A three-dimensional ant colony optimization algorithm for multi-
compartment vehicle routing problem considering carbon emissions, Applied Soft Computing, Vol. 127, Article No. 
109326, doi: 10.1016/j.asoc.2022.109326. 

[33] Li, D., Li, K. (2023). A multi-objective model for cold chain logistics considering customer satisfaction, Alexandria 
Engineering Journal, Vol. 67, 513-523, doi: 10.1016/j.aej.2022.12.067. 

[34] Zhu, X., Zhao, Z., Yan, R. (2020). Low carbon logistics optimization for multi-depot CVRP with backhauls - Model 
and solution, Tehnički Vjesnik – Technical Gazette, Vol. 27, No. 5, 1617-1624, doi: 10.17559/TV-20200809211109. 

[35] Jabbarpour, M.R., Noor, R.M., Khokhar, R.H. (2015). Green vehicle traffic routing system using ant-based algorithm, 
Journal of Network and Computer Applications, Vol. 58, 294-308, doi: 10.1016/j.jnca.2015.08.003. 

[36] Xiao, Y., Konak, A. (2017). A genetic algorithm with exact dynamic programming for the green vehicle routing & 
scheduling problem, Journal of Cleaner Production, Vol. 167, 1450-1463, doi: 10.1016/j.jclepro.2016.11.115. 

[37] Poonthalir, G., Nadarajan, R. (2018). A fuel efficient green vehicle routing problem with varying speed constraint 
(F-GVRP), Expert Systems with Applications, Vol. 100, 131-144, doi: 10.1016/j.eswa.2018.01.052. 

[38] Çimen, M., Soysal, M. (2017). Time-dependent green vehicle routing problem with stochastic vehicle speeds: An 
approximate dynamic programming algorithm, Transportation Research Part D: Transport and Environment, Vol. 
54, 82-98, doi: 10.1016/j.trd.2017.04.016. 

[39] Ehmke, J.F., Campbell, A.M., Thomas, B.W. (2016). Vehicle routing to minimize time-dependent emissions in urban 
areas, European Journal of Operational Research, Vol. 251, No. 2, 478-494, doi: 10.1016/j.ejor.2015.11.034. 

[40] Salehi Sarbijan, M., Behnamian, J. (2022). Real-time collaborative feeder vehicle routing problem with flexible time 
windows, Swarm and Evolutionary Computation, Vol. 75, Article No. 101201, doi: 10.1016/j.swevo.2022.101201. 

[41] Kennedy, J., Eberhart, R.C. (1997). A discrete binary version of the particle swarm algorithm, In: Proceedings of 
1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 
Orlando, Florida, USA, 4104-4108, doi: 10.1109/ICSMC.1997.637339. 

 

https://doi.org/10.1016/j.measurement.2016.04.043
https://doi.org/10.1016/j.measurement.2016.04.043
https://doi.org/10.1016/j.trd.2013.04.001
https://doi.org/10.1016/j.ijpe.2016.03.008
https://doi.org/10.1016/j.jclepro.2018.08.075
https://doi.org/10.1016/j.jclepro.2022.133916
https://doi.org/10.1016/j.asoc.2022.109326
https://doi.org/10.1016/j.aej.2022.12.067
https://doi.org/10.17559/TV-20200809211109
https://doi.org/10.1016/j.jnca.2015.08.003
https://doi.org/10.1016/j.jclepro.2016.11.115
https://doi.org/10.1016/j.eswa.2018.01.052
https://doi.org/10.1016/j.trd.2017.04.016
https://doi.org/10.1016/j.ejor.2015.11.034
https://doi.org/10.1016/j.swevo.2022.101201
https://doi.org/10.1109/ICSMC.1997.637339



