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A B S T R A C T A R T I C L E   I N F O 
Most existing inspection models solely classify defects as either good or bad, 
focusing primarily on separating flaws from perfect ones. The sequential clus-
tering and classification technique (SCC) is used in this work to not only iden-
tify and categorize the defects but also investigate their root causes. Conven-
tional clustering techniques like k-means, fuzzy c-means, and self-organizing 
map are employed in the first stage to find the defects in the finished products. 
Then, a novel clustering method, that combines a sine-cosine algorithm and 
possibilistic fuzzy c-means (SCA-PFCM), is proposed to classify the detected de-
fects into multiple groups to identify the defect categories and analyze the root 
causes of failures. In the second stage, the ground truth labels taken from the 
clustering technique are used to construct an automated inspection system us-
ing back propagation neural networks (BPNN). The proposed approach is ap-
plicable for detecting and identifying the causes of errors in manufacturing in-
dustry. This study applies a case study in nipper manufacture. The SCA-PFCM 
algorithm can detect 97 % of defects and classify them into four types while 
BPNN shows a predicted accuracy of up to 96 %. Additionally, an automated 
inspection system is developed to reduce the time and cost of the inspection 
process. 
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1. Introduction
The rapid rise of both information and operational technology is accelerating the transition from 
traditional manufacturing to smart factories. A smart factory typically relies on modern infor-
mation and communication technology, with all of the factory's components being smartly inte-
grated and operated [1]. A smart factory needs to optimize production conditions with a minimum 
of resources and time. Defects are one of the primary causes of high production costs. Therefore, 
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the inspection system for defect detection is crucial in smart manufacturing, which necessitates 
the quick detection of defects and categorizes defect types. Effective defect categorization aids in 
determining and analyzing the type of failure that occurs based on the process conditions [2]. Be-
sides, the defect types can be used to diagnose equipment failure and analyze its root causes. 
Moreover, an effective inspection system can raise customer satisfaction levels by preventing 
them from obtaining substandard goods. 
 Many manufacturing factories still operate the visual and sampling inspection manually. Sam-
pling inspections cannot catch all the defects like a thorough inspection can. Manual inspection 
may lead to inconsistent results, expensive costs, and time-consuming [3]. Enterprises expect 
quick defect detection and root cause investigation to provide timely regulation of production line 
failures [4]. A more effective and reliable automated defect inspection system is required to over-
come the drawbacks of sampling and manual inspection in manufacturing.  
 Generally, a data analysis framework to detect the defects and investigate their causes is nec-
essary. However, the majority of the research that has been done so far has solely focused on iden-
tifying defects or defect prediction models, which can result in dividing the finished products into 
two groups: 1) defects, and 2) non-defective ones [5]. In practice, the manager may not only need 
to detect failure or an abnormal state in the manufacturing process but also identify the causes of 
defects in the routine execution of the production plan to make timely adjustments and correc-
tions [6]. This process is known as root cause analysis which aims to determine the underlying 
cause of an issue and the measures required to solve it.  
 A novel model of sequential clustering and classification-based genetic algorithm (NSGAII-SCC) 
has recently been proposed by Yang and Quyen to investigate the hidden structure of data and to 
identify the features correlated with the explored patterns [7]. The NSGAII-SCC framework is ap-
plied to analyze the point of sale (POS) data for a chain of bakeries in China [8]. The bakery store 
is partitioned into several clusters using a clustering technique and classification is then used to 
investigate the factors that contribute to the partition process of each store cluster. Kuo et al. pre-
sented an extension of the NSGAII-SCC by combining a deep learning and multi-objective sine-
cosine algorithm (Deep MOSCA-SCC) [9]. The Deep MOSCA-SCC algorithm employed a deep clus-
tering technique that combined auto-encoder and k-means to improve clustering performance. 
Generally, the SCC approach is useful for defect detection and classification, analyzing its root 
causes as well as establishing an automatic detect defection model in the above analysis.  
 Thus, this study focuses on developing a model-based SCC method to detect the defects and 
analyze their root causes. In the first stage, the proposed model-based SCC method first employs 
clustering methods to detect the defects in the finished product. Thereafter, the defects are clas-
sified into several groups with similar properties to identify the defect categories. Most of the re-
search used traditional clustering techniques like k-means algorithm[10] or fuzzy c-means (FCM) 
algorithm [11] for industrial applications since they are simple to implement and interpret the 
result. However, the clustering result was also comparable. In the first stage, several conventional 
clustering techniques, i.e., k-means, FCM, self-organizing map (SOM) [12], and DBSCAN [13], are 
employed to detect the defects from the flawless ones since this process is not very complicated 
due to the predetermined number of clusters k is known as two labels (defect or non-defect). To 
determine the defect categories and analyze the root causes of failures, a novel clustering method 
that combines a sine-cosine algorithm and possibilistic fuzzy c-means (SCA-PFCM), is proposed. 
In the second stage, a back propagation neural network (BPNN) [14] is employed to develop an 
automatic defect detection model based on the ground truth labels adopted from the clustering 
technique. In contrast to existing SCC methods, the proposed inspection model-based SCC contrib-
utes by combining innovative clustering and classification techniques, namely SCA-PFCM and 
BPNN, whereas the original NSGAII-SCC suggested an integration of traditional k-means and de-
cision tree classifier. The research result is then applied to an inspection system of a nipper man-
ufacturing factory in Vietnam. 
 The paper is arranged as follows. The review of sequential clustering and classification method 
is shown in Section 2. Section 3 describes the production and inspection process in nail nipper 
manufacturing. The methodology is presented in Section 4. Section 5 illustrates the result analysis 
of a case study. The concluding remarks and future research direction come in Section 6. 
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2. Methods and materials 
2.1 Review of sequential clustering and classification method 

Since clustering is frequently carried out without knowledge regarding the membership of data 
instances to predetermined labels, it is commonly referred to as a technique for unsupervised 
learning [15]. The goal of clustering is exploratory the structure of the dataset. The clustering pro-
cess divides objects in a given dataset into distinct groups or clusters, with each cluster consisting 
of objects that are similar to each other in that cluster but dissimilar to objects in other clusters. 
On the contrary, classification is a supervised approach that assigns categories or labels to data 
records based on previously collected information [16]. The classification process consists of two 
steps. The first step is to develop a training model based on the classification rules using the given 
data, which contains a set of attributes and their corresponding outcomes. The training model is 
then used in the second step to forecast the labels for incoming unknown data. The complexity of 
the large number of features utilized as a classifier is what makes these processes challenging [17]. 
 Yang and Nguyen [7] proposed the SCC framework, which combines clustering and classifica-
tion sequentially on two different datasets. The SCC framework can investigate the hidden struc-
ture of data and discover the features that are relevant to the explored patterns. Fig. 1 illustrates 
the SCC framework. From the original dataset, the target interests were identified and these fea-
tures were then used for discovering data patterns by the clustering algorithm. The remaining 
dataset contained the relevant features that are correlated with the target features. A clustering 
algorithm was implemented on the dataset containing target features to explore the data patterns. 
The result of clustering algorithm was embedded into the training process of the classification 
model. Two popular clustering algorithms, k-means, and hierarchical clustering, were used to per-
form clustering. The classification algorithm employed decision trees [18], artificial neural net-
works (ANN) [19], k-nearest neighbor (KNN) [20], and support vector machine (SVM) [21]. As a 
result, there are eight clustering-classification algorithm combinations built from two clustering 
methods and four classification methods. Besides, as combining heuristic techniques and machine 
learning become more prevalent [22, 23], the SCC framework combined with NSGAII to deal with 
two objective functions from clustering and classification tasks. Because the number of clusters 
(k) is not predetermined, the SCC framework implemented the various values of k (from 2 to 10) 
and finally selected the solution based on the Pareto front. For each value of k, multiple solutions 
are selected from the first Pareto front to balance two objective functions of clustering and classi-
fication tasks. Performance was superior to the others when k-means clustering and decision tree 
classification were combined. 

The Deep MOSCA-SCC algorithm [9] is also an SCC approach that employed deep clustering to 
enhance the clustering compactness and classification accuracy. Herein, MOSCA [24], which is a 
simple and easy-to-implement method, was applied to exploit the optimal result for the SCC ap-
proach. The utilization of MOSCA in the Deep MOSCA-SCC algorithm was expected to speed up 
computation compared to NSGAII. However, the experimental results demonstrated that there 
was no benefit in Deep MOSCA-SCC computational time due to the use of autoencoder, which in-
creased computational time. 
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Fig. 1 The SCC approach  
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2.2 Proposed methodology 

The manual examination procedure necessitates a significant amount of human labor and ex-
penditure. Industry 4.0 is having an impact on nail manufacturing, with automated defect detec-
tion reducing inspection time and human labor. Automatic visual inspection, which plays a key 
part in the quality inspection process of smart manufacturing, is a promising technology in this 
scenario. The SCC technique is used for algorithm development of an automatic visual inspection 
in nipper manufacturing in this study.  

This study utilizes the SCC method [7] to not only detect the defects from the flawless ones but 
also classify the defects into several groups with similar attributes for root cause analysis in the 
first stage. An automated defect detection system is developed in the second stage. The result of 
the first stage is used to train the classification model for automatic defect detection. The meth-
odology framework is shown in Fig. 2. 

 
Fig. 2 Methodology Framework 

Stage 1: Defect detection and root cause analysis using clustering technique 

Detecting defects from the finished products 
In this stage, the clustering techniques are employed for defect detection and root cause analysis 
in nipper manufacturing. The dataset is collected from a nipper factory in Vietnam. The Depart-
ment of quality control provides historical data on finished items, which is only divided into two 
categories: defective products and non-defective products. Thus, this study first uses the cluster-
ing technique to detect the defects from the flawless ones. The number of clusters is defined as 
𝑘𝑘 = 2 and the class labels of all data instances are predetermined based on the historical data. k-
mean, FCM, SOM, and DBSCAN are employed to classify the defects and non-defected items in the 
first stage since they are in the group of popular clustering methods applied for industry applica-
tions [25, 26]. Clustering accuracy (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐴𝐴𝐴𝐴𝐴𝐴) is used to evaluate the result of this step. The 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐴𝐴𝑐𝑐𝑐𝑐 is calculated as follows [27]: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑏𝑏𝑖𝑖𝑘𝑘
𝑖𝑖=1
𝑛𝑛

 ,      (1) 
where 𝑏𝑏𝑖𝑖 is the number of instances that are classified in a corrected cluster, 𝑛𝑛 is the number of 
total data instances. 

Proposed SCA-PFCM for identifying the defect categories 
The defects revealed in the first step are classified into several types of defects that have similar 
properties to analyze the root causes of defects. Herein, k is unknown. Thus, this study proposes 
a novel clustering method, i.e., SCA-PFCM, which not only automatically determines the optimal k 
but also simultaneously partitions the clusters to reveal data patterns corresponding to the se-
lected k. The proposed SCA-PFCM inherited the approach of identifying the optimal number of 
clusters in an automatic fuzzy clustering method proposed by Nguyen and Kuo [28], which deals 
with automatic clustering for categorical data. However, the dataset from the nipper industry con-
tains numerical features. Thus, the distance measure in the clustering procedure is changed to be 
appropriate for the data features. Besides, SCA is employed since it is a simple and straightforward 
algorithm with competitive performance as compared with GA, and PSO [29]. The sine and cosine 
functions are utilized to update the particle’s position in the SCA algorithm as follows: 
 
 

 𝑋𝑋𝑖𝑖
(𝑡𝑡+1) = 𝑋𝑋𝑖𝑖𝑡𝑡 + 𝑟𝑟1 × sin(𝑟𝑟2) × �𝑟𝑟3𝑃𝑃𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡�, 𝑟𝑟4 < 0.5  (2) 

 𝑋𝑋𝑖𝑖
(𝑡𝑡+1) = 𝑋𝑋𝑖𝑖𝑡𝑡 + 𝑟𝑟1 × cos(𝑟𝑟2)× �𝑟𝑟3𝑃𝑃𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡�, 𝑟𝑟4 ≥ 0.5  (3) 
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where 𝑋𝑋𝑖𝑖𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑖𝑖
(𝑡𝑡+1)is the position of individual i at iteration t and 𝑡𝑡 + 1, respectively. 𝑃𝑃𝑖𝑖𝑡𝑡 is the 

optimal position at the current iteration 𝑡𝑡. 𝑟𝑟1is a control number that is calculated as: 
 

𝑟𝑟1 = µ − 𝑡𝑡 µ
𝑇𝑇

                                                                                 (4) 
 

while 𝑟𝑟2 is a number randomly chosen between 0 and 2π, whereas 𝑟𝑟3, 𝑟𝑟4 ∈ (0,2). µ is a constant. 
The SCA-PFCM algorithm's process is explained as follows: 
 

Step 1: Identify the maximum k (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) 
A local density-based approach named RECOME [30] is employed to determine 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚. The cluster 
center typically has higher local density and is surrounded by neighbors with lower local densi-
ties. If the number of high-density centers is discovered, the 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 can be obtained. The procedure 
to determine 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 is shown in Fig. 3. 
 

Step 2: Set up parameters for SCA and PFCM algorithms. 
 

Step 3: Initialization: Randomly generate the initial population. A solution representation consists 
of two parts. The first part is used to define the k. A control element 𝐶𝐶𝑝𝑝 is used to determine k in 
each particle where 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐶𝐶𝑝𝑝 ≤ 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚. 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 is set at 2. To determine 𝐶𝐶𝑝𝑝, we randomly generate a 
vector 𝐶𝐶 = 𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑗𝑗, … ,𝐶𝐶𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 in the range of [0, 1]. 𝐶𝐶𝑝𝑝 is determined by counting the elements 
in C that are greater than 0.5: 𝐶𝐶𝑝𝑝 = count (C|𝐶𝐶𝑗𝑗 ≥ 0.5). The second part of a particle is the cluster 
center corresponding to the value of k in the first part. 
 

Step 4: Calculate fitness: The PFCM algorithm is implemented for each particle in the population. 
The fitness value is obtained through the objective function of PFMC algorithm. 
 

Step 5: Identify the optimal solution 𝑃𝑃𝑖𝑖𝑡𝑡 at iteration t. 
 

Step 6: Compute 𝑟𝑟1 using Eq. 4 and randomly generate 𝑟𝑟2 𝑟𝑟3, and 𝑟𝑟4. 
 

Step 7: Update the cluster centers using Eq. 2 and Eq. 3. 
 

Step 8: Return to step 4 until the stopping condition is met.  
 

 
 

Fig. 3 Procedure to determine 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  [28] 
 

The result in this stage, which includes the class labels and the number of clusters for defects, 
is used to train the model in the second stage. 
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Stage 2: Automatic defect detection using back propagation neural network (BPNN) 

BPNN [14] is a popular branch of ANN that contains a multi-layer feedforward network trained 
by the error BP technique. A BPNN consists of three different layer types: input, hidden, and out-
put layers. The hidden layer acts as a link for signal forward propagation connecting the input and 
output layers. If the output layer is unable to produce the required results, the error BP will trans-
mit an error signal from the output nodes back via the hidden layer to the input nodes before 
repeating the signal forward propagation.  

This study employs BPNN to develop an automated defect prediction model. The labels that are 
revealed by clustering techniques in the first stage are used to train the BPNN model. The number 
of neurons in the input layer is identified by the number of data features that significantly impact 
the output. The output layer nodes depend on the defect categories that are partitioned in the first 
stage. It is calculated by multiplying the number of defect types by one to represent the defect 
categories and good products. The performance of the BP network is significantly influenced by 
the number of hidden layers and hidden layer nodes. A single hidden layer or two hidden layers 
can be considered in the design of BPNN model depending on its predictive performance [31]. 
Besides, better performance can be achieved with more hidden layer nodes, although a lengthy 
training period may result. Typically, an empirical formula is used to estimate the number of hid-
den layer nodes. The empirical formula is displayed as follows [32]: 

 

𝐻𝐻 = √𝐼𝐼 + 𝑂𝑂 + 𝑎𝑎,                                                                (5) 
 

where I, H, and O are the number of nodes in the input, hidden, and output layers, respectively, 𝑎𝑎 
is a constant number in the range [0, 10]. Cross-entropy is selected as the loss function, which is 
calculated as follows [33]: 

𝐸𝐸 = −∑ (𝑦𝑦𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑦𝑦�𝑖𝑖))𝑁𝑁
𝑖𝑖=1 ,                         (6) 

 

where 𝑦𝑦𝑖𝑖  is the target value, 𝑦𝑦�𝑖𝑖  is predicted value. The structure of BPNN that contains two hidden 
layers for automated defect prediction is shown in Fig. 4. 

The proposed method is applicable for detecting and identifying the causes of errors in indus-
trial manufacturing. There are two ways that the input data can be gathered from the industry: 
sensor signal data or image data. The proposed method in its current form can work well for signal 
data. If the input is the image data, it can be preprocessed to extract the features from the image 
before the proposed method is implemented. This paper analyzes a case study in nipper manufac-
turing. An automatic defect detection system is developed in Section 3.3 in which the product im-
ages are taken on the production line. The user can adjust the model to match the type of input 
data. 

The nipper manufacturing industry in Vietnam, which is selected as a case study for this re-
search, will be covered in the next subsection, along with the production and inspection processes. 

 
Fig. 4 The structure of BPNN model for automated defect prediction 
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2.3 Production and inspection processes in nipper manufacturing 

This section introduces the production and inspection processes in nipper manufacturing. There 
are two types of nippers: cuticle nippers and nail nippers. The cuticle nipper usually has a smaller 
jaw and handle, as compared to the nail nipper. Besides, the cuticle nipper also has a lighter weight 
than the nail nipper. A nipper consists of five main components: jaw, joint, spring, spring pin, and 
handles. The jaw is designed with exact blade alignment and precision sharpening. For the cuticle 
nipper, there is different jaw size such as J12, J14, and J16 which are corresponding to the blade 
sizes are 4.5-5.5 mm, 5.5-6.5 mm, and 6.5-7.5 mm, respectively. In contrast, the nail nipper only 
has one jaw size of 6.5-8.0 mm. The joints aim to transmit the cutting force from the handles to 
the two jaws when the user squeezes them. Box joint is designed to warranty it is durable. Springs 
are used to assist (push and elastic) the user when squeezing the two handles. The pin is used to 
hold the spring with the handle. Besides, the company name or logo is also etched on the handle. 

The manufacturing process of a nipper is described in Fig. 5. There are four main stages in the 
whole production process. The first stage is to make a mold from the mold blueprint. In the press-
ing stage, several processes, such as cutting, stamping for shaping, bending the blade edges, an-
nealing mill, and grinding the surface, are continuously carried out. The output of this stage is a 
shaped nipper. The process is continued in the pre-processing stage which includes the stamping 
and drilling assembly, thermal process, shaping of the jaw, polishing of the handle, and plating. 
Thereafter, the preliminary nipper is transferred to the finishing stage with the following pro-
cesses: installing springs, printing laser, polishing the jaw, sharpening the blade edge, and clean-
ing the finished product. There is an inspection process to check product quality at each stage. 
Then, the inspection process is applied to the finished product. The criteria for inspection consist 
of sharpness, the shape of the jaw, logo printing, length of the blade, and handle length. The in-
spection process is performed manually and is costly. Moreover, the number of products per day 
is also huge. Thus, sampling inspection is currently used with a sample of 10 % to 20 % of finished 
products randomly taken for inspection. The sampling inspection process cannot guarantee the 
quality of all the finished products. 
 

 
Fig. 5 The manufacturing process of a nipper 

3. Case study: Result and discussion 
3.1 Data collection and parameter setting 

The experiment uses the historical data gathered from a nipper manufacturing factory in Vietnam. 
According to the company's current production needs, a total of 15000 nippers of various types 
must be produced per day. As a result, the amount of data recorded day by day becomes very huge 
to process. This study analyzes three different types of nail nippers, coded D555, D401, and D363, 
respectively. D555 includes 84320 data instances, whereas D401 and D363 have 48384 and 
33690 data instances. Each data instance has the 12 features such as nipper length, handle, blade 
length, width and thickness of nipper handles, thickness of two nipper bearings, and so on. 

In the first stage, k-means, FCM, SOM, and DBSCAN are used to classify the defects from the 
flawless ones. The number of clusters is predetermined as 𝑘𝑘 = 2. Clustering accuracy is employed 
to evaluate the result. Then the discovered defects are used to perform clustering to determine 
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the defect types by using the proposed SCA-PFCM algorithm. To compare the optimal k obtained 
from the SCA-PFCM, the elbow method-based k-means is employed in which the sum of squared 
error (SSE) is considered as a performance indicator. SSE is calculated as follows: 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ ∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑚𝑚𝑗𝑗𝑥𝑥∈𝐶𝐶𝑗𝑗
𝑘𝑘
𝑗𝑗=1 )2    (7) 

 

The parameter setting for BPNN model will be discussed in more detail in the next subsection 
after getting the result of the first stage. 

3.2 Result analysis 

First-stage experimental findings 
Clustering methods are first used to detect the defects in the finished product. The k-means, FCM, 
SOM, and DBSCAN algorithms are implemented on the three datasets. Each algorithm is executed 
30 times for each tested dataset. Table 1 shows the clustering accuracy based on the average val-
ues of 30 runs and the standard deviation. It is not much different from the clustering accuracy by 
k-means and FCM. The DBSCAN algorithm is slightly better since its accuracy dominates the other 
algorithms for all tested data. Thus, the clustering result of DBSCAN is used in the next step. Table 
2 shows the number of defective and non-defective products detected by DBSCAN method. 
 

Table 1 Clustering accuracy of the process to classify defects from flawless ones 
 

Dataset k-means FCM SOM DBSCAN 
D555 0.912 ± 0.001 0.904 ± 0.003 0.896 ± 0.003 0.913 ± 0.001 
D401 0.938 ± 0.001 0.940 ± 0.002 0.913 ± 0.002 0.942 ± 0.002 
D363 0.953 ± 0.001 0.951 ± 0.001 0.948 ± 0.002 0.965 ± 0.001 

 
Table 2 Clustering results in terms of class labels 

 

Dataset Number of instances 
Total  Non-defective  Defective 

D555 84320  46873  37447 
D401 48484  28245  20239 
D363 33690  18970  14720 

 

 To analyze the root cause of failures, the defects are classified based on their features. The 
number of clusters, which is represented by how many types of defects, is unknown. Elbow 
method-based k-means clustering is applied. Fig. 6 shows the SSE plot for various k in the D555, 
D401, and D363 datasets, respectively. The result is quite consistent since the optimal k is selected 
at 𝑘𝑘 = 4, which means that there are 4 types of defects. 
 

 
 

Fig. 6 Identify the number of defect types based on the elbow method 
 

Besides, the number of defect types is also determined using the proposed SCA-PFCM. The re-
sult is quite similar to the elbow-based k-means since four types of defects are determined. 
However, the performance in terms of SSE of the SCA-PFCM is smaller than that of the elbow-
based k-means, as shown in Table 3. It means that the clustering result provided by SCA-PFCM is 
more compact. The number of defect types and the label of each defect instance obtained from the 
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SCA-PFCM are used in the second stage. The defect types can be listed as follows. The first type of 
defect is untight jaws since there is a clearance between two blades of the nipper that exceeds the 
gap standard. In the blade sharpening process, the craftsman leaves a gap that is allowed ac-
cording to the standard. If they sharpen it a lot, there is a gap between the two blades of the nipper, 
and the length of the blade may be shorter. Most of the defects derive from this cause. The second 
and third types of defect are large gaps in the upper and lower gills of the nipper caused by the 
assembly process of the box joint. The four defect type belongs to the length of the nipper blade 
as it can be shorter or longer than its standard length due to the blade grinding process.  

 
Table 3 Comparison of SCA-PFCM and elbow-based k-means in terms of SSE 

 

Dataset Optimal k SSE 
SCA-PFCM  Elbow method 

D555 4 14233.89  15784.78 
D401 4 10602.53  11649.34 
D363 4 8321.94  9157.63 

Experimental results in the second stage 
The number of defect types and the label for each defect are employed to train the model in the 
second stage. This stage aims to not only detect the defects from the finished products but also 
classify the defects into certain groups that are identified in the first stage. Hence, there are five 
labels representing four types of defects and good product and their corresponding number of 
instances are presented in Table 4. 

The parameter for BPNN model with a single hidden layer (denoted as BPNN-1) is set up as 
follows. First, the input layer nodes equal to 12 which are the significant non-linear relationship 
variables to represent product features. The output layer nodes are 5 including the defect types 
and good product. Based on Eq. (5), the number of neurons in the hidden layer is from 4 to 14. 
After several trial experiments, the hidden layer nodes are selected as 10, initial weight 𝑤𝑤 = 0.2, 
learning rate 𝑟𝑟 = 0.1, and inertia weight 𝑐𝑐 = 0.6. Logsig and purelin are the activation functions 
for the hidden and output layers, respectively [31]. Regarding the BPNN model with two hidden 
layers (BPNN-2), the input and output layers are set up similarly to the BPNN-1 model. The 
number of neurons in the first hidden layer is also from 4 to 14 as determined by Eq. (5). This 
study eliminates half of the constant number in Eq. (5), which now ranges from 0 to 5, to shorten 
the computation time. Thus, there are 4 to 9 neurons in the second hidden layer. The activation 
functions and other parameters are similar to the BPNN-1 model. After a series of experimental 
trials, the first and second hidden layers are chosen to have 12 and 6 neurons, respectively, based 
on their predictive performance. Table 5 shows the selection of key parameters for BPNN models. 
 

Table 4 Data properties for classification 
 

Label Types of defect 
Number of instances 

D555  D401  D363 
1 Non-defective 46873  28245  18970 
2 Untight jaws 19326  11017  6793 
3 Large gap in the upper gill of nipper 8768  3790  3278 
4 Large gap in the lower gill of nipper 6293  4032  3480 
5 Length of nipper blade 3060   1400   1169 

 
Table 5 Setting for BPNN model 

 

Model Number of neurons  Activation function 
Input layer Hidden layer Output layer  Hidden layer Output layer 

BPNN-1 12 10 5  logsig purelin 
BPNN-2 12 12-6 5  logsig purelin 

 
To evaluate how well the BPNN model predicts, the confusion matrix is utilized [34]. Four pre-

dictive performance metrics are obtained from the confusion metrics, as follows: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =(TP+TN)/(TP+FP+TN+FN)    (8) 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = TP/(TP+FN)      (9) 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)       (10) 
 

𝐹𝐹_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  2 · 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 · 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃/(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)  (11) 
 

where 𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇, 𝐹𝐹𝐹𝐹, and 𝐹𝐹𝐹𝐹 represent true positives, true negatives, false positives, and false nega-
tives, respectively. Table 6 shows the experimental result in terms of the confusion matrix of da-
taset D555 implemented by the BPNN-1 model. The overall accuracy is 94.6 % which is calculated 
by taking the average of the correctly predicted values in each class. The overall error rate corre-
spondingly is 5.4 %. Besides, Kappa coefficient [35] is also used to evaluate the agreement 
between predicted values and truth class values. The kappa coefficient is computed as 93.2 % to 
represent a perfect agreement. Similarly, the confusion matrix of dataset D555 implemented by 
the BPNN-2 model is displayed in Table 7. The overall accuracy, overall error rate, and Kappa 
coefficient achieved by BPNN-2 are 96 %, 4 %, and 94.8 %, respectively, which are relatively hig-
her than those achieved by BPNN-1 model. Table 8 summarizes the result comparison of the 
BPNN-1 and BPNN-2 models in the three tested datasets. The BPNN-2 model is significantly better 
than the BPNN-1 model in terms of accuracy and Kappa coefficient. Besides, the computational 
time on the product group of each tested dataset is also presented in Table 8. The BPNN-2 takes 
more time for the training model. Therefore, compared to the BPNN-1, its computing time is sig-
nificantly longer. However, the result in Table 8 is shown for the product group that includes nu-
merous objects. The highest computational times, while taking into account the average compu-
tational time for each product, are 0.052 and 0.045 for BPNN-2 and BPNN-1, respectively. The 
average computation time per product provided by the two models does not differ considerably 
while the accuracy of BPNN-2 is significantly better. Thus, the BPNN-2 model is used to develop 
an automatic defect inspection system presented in the next subsection. 
 

Table 6 Confusion matrix of dataset D555 implemented by the BPNN-1 model 
 

BPNN-1 
Dataset D555 

Actual 
Non-de-
fective 

(%) 

Untight 
jaws 
(%) 

Large gap in 
the upper gill 

(%) 

Large gap in 
the lower gill 

(%) 

Over-length of 
nipper blade 

(%) 

Predicted 

Non-defective 100 0 0 0 0 
Untight jaws 0 100 2 13 0 
Large gap in the upper gill 0 0 88 0 0 
Large gap in the lower gill 0 0 8 87 2 
Over-length of nipper blade 0 0 2 0 98 

 
Table 7 Confusion matrix of dataset D555 implemented by the BPNN-2 model 

 
 

BPNN-2 
Dataset D555 

Actual 
Non-de-
fective 

(%) 

Untight 
jaws 
(%) 

Large gap in 
the upper gill 

(%) 

Large gap in 
the lower gill 

(%) 

Over-length of 
nipper blade 

(%) 

Predicted 

Non-defective 100 0 0 0 0 
Untight jaws 0 100 0 10 0 
Large gap in the upper gill 0 0 93 0 0 
Large gap in the lower gill 0 0 5 90 3 
Over-length of nipper blade 0 0 2 0 97 

 
Table 8 Result comparison 

 
 

Dataset D555  D401  D363 
BPNN-1 BPNN-2  BPNN-1 BPNN-2  BPNN-1 BPNN-2 

Overall accuracy (%) 94.6 96   93.5 95.2  92.8 96.3 
Overall error rate (%) 5.4 4  6.5 4.8  7.2 3.7 
Kappa Coefficient (%) 93.2 94.8  93.1 94.7  92.1 95.9 
Computational time (s) 2440.5 2916.2  1795.5 2091.9  1529.2 1751.6 
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3.3 Automated defect inspection system 
The BPNN-2 model whose results were validated in Section 5.2.2 is used in the automatic in-
spection system for nipper manufacturing. To transfer from manual inspection to the automatic 
inspection process, an advanced sensing system with smart camera sensors is installed. The 
system includes two industry cameras that are installed perpendicular to the conveyor. One 
camera is used to check the overall sizes of a nipper. Another one is put closer for enlarging to 
check the criteria related to the nipper’s jaw. The cameras take pictures of the product from dif-
ferent angles. Then the system will analyze the images to extract the related feature to evaluate 
the product quality. There are a total of 12 features extracted from the image captured by from 
sensor camera, such as the nipper length, handle, blade length, the clearance between two nipper 
blades, width, and thickness of nipper handles, the thickness of two nipper bearings, and so on. 
Besides, the optical illumination system is installed under a transparent conveyor and shines in 
the opposite direction through the conveyor towards the camera.  

The automatic visual inspection system in nipper manufacturing is displayed in Fig. 7. The 
system is operated as follows. Operator 1 puts the nippers on the conveyor in the correct direc-
tion. The system will adjust to make the nipper on the conveyor alignment. The sensor camera 
takes pictures automatically when the nipper passes through the inspection position. The image 
is transmitted to the processing system and the product features are extracted. 

 

 
Fig. 7 The automatic inspection system in nipper manufacturing 

 
 
The previous system at the company only detects a nipper to a defect or non-defective product. 

If a tested nipper is determined as a non-defective one, the product sorting mechanism is not ac-
tive. Thus, the nipper will automatically transfer to the finished product tray. Otherwise, the pro-
duct sorting mechanism is active to push a nipper on the other side of the conveyor and transfer 
it to the defect tray. However, this study considers not only detecting the defects but also finding 
the root cause of defects. Thus, the defects are classified into four groups based on their features 
as the result of the experiment. A classification model based on the clustering result in the first 
stage is developed to classify the tested nipper and determine exactly what type of defect the 
tested nipper is. The result is not only displayed on the screen but also has a sound warning to 
remind Operation 2 of the types of defects. Operator 2 has a responsibility to take the classified 
defect into the correct tray of defect types. 

4. Conclusion 

Defect detection is critical for quality control in the company. By detecting the defects in the fin-
ished products, the company can prevent sending out defects to customers. Classifying the defects 
into different categories based on their features also helps to determine the defect’s causes. The 
management can utilize this information to make better decisions about addressing the defects or 
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eliminating the factors that caused defects. Thus, the SCC method is utilized in this study to per-
form these works for the inspection process in the nipper factory in Vietnam. The DBSCAN clus-
tering method is used to detect the defects in the finished products. Besides, a novel SCA-PFCM 
algorithm is proposed for defect categories. Then BPNN is employed to make an automatic inspec-
tion system. The result showed that the clustering and classification accuracy are all high to prove 
that the model is robust. The defects in the nipper were detected and classified into four different 
types based on the features of the defective products. Based on this result, an automatic defect 
detection model-based visual inspection was developed to help the factory improve the inspection 
process in terms of quality, time, and cost. 

There are some limitations in the proposed method that can be enhance for further research. 
First, the clustering stage is critical important and affect the result of the classification stage since 
its result is embedded in the classification process. Thus, improving the clustering result is neces-
sary. The proposed SCA-PFCM only considered within cluster distance as the objective function in 
the clustering process. Future research can investigate mul-objective function 

This research can be extended to detecting the failures in the whole manufacturing process, 
not only in the finishing stage, as the recommendation by the manager. Besides, developing an 
algorithm to improve the quality of combining clustering and classification is also necessary. 
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