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A B S T R A C T A R T I C L E   I N F O 
Maintenance plays an increasingly important role in the life of production com-
panies, as professional maintenance is an important prerequisite for the relia-
ble operation of resources. A well-chosen maintenance strategy can make a ma-
jor contribution to increased efficiency of production processes. The main goal 
of this research is to propose a novel optimization approach to define optimal 
maintenance strategy that ensures the efficient operation of the production 
process while reducing maintenance costs. The developed optimization 
method is based on Howard’s policy iteration and describes the objective of the 
planning as a Markov decision process. The novelty and the scientific contribu-
tion of the presented study is the application of Howard’s policy iteration meth-
odology in a Markov decision process for agile, condition-based maintenance 
strategy optimization. As the results of the numerical analysis of the scenarios 
shows, the implementation of an optimized maintenance strategy based on the 
proposed approach can significantly increase the maintenance efficiency of the 
production process. The main reason for this is that the level and type of 
maintenance is always implemented depending on the current state of the sys-
tem components, which reduces both the maintenance cost and the losses due 
to production downtime.  
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1. Introduction
The global maintenance market is expected to grow from 42.66 billion USD in 2022 to 72.46 bil-
lion USD by 2029, and this grow means 7.9 % Compound Annual Growth Rate [1]. This fact shows 
the importance of maintenance in manufacturing. Across industry, a wide range of maintenance 
strategies can be used to support the availability of technological and logistics resources. These 
strategies can be classified in many ways. The maintenance strategies can be classified as preven-
tive or corrective types. Preventive maintenance strategies are based on the idea, that mainte-
nance operations are performed before failure occurs, while in the case of corrective maintenance, 
the maintenance operations are performed after the failure has occurred. However, Telek con-
cluded in maintenance logistics research [2], that the maintenance appears as an independent 
service element of the production process, but in my opinion, maintenance strategy and mainte-
nance operations must integrated into the whole business process, including purchasing, produc-
tion, distribution and reverse processes. Agility can be a very important benefit of a well-chosen 
maintenance strategy, as it allows to react to detected failures in a timely manner through a well-
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chosen maintenance operation. A maintenance strategy can be considered well-chosen if it en-
sures efficient operation of the machines in a cost-effective way, so agile maintenance makes it 
possible to respond to changes in the condition level of the manufacturing plant. 

A significant link between smart manufacturing and intelligent maintenance has been created 
by the fourth industrial revolution, which transformed conventional manufacturing systems into 
cyber-physical systems, creating real-time decision algorithms that can greatly increase the utili-
sation of production and logistics capacity in manufacturing systems, increasing flexibility and 
availability, while also greatly improving process sustainability. The connection between the 
smart manufacturing paradigm and the intelligent maintenance is based on digital twin technolo-
gies, which makes it possible to forecast future status of physical systems and make real-time de-
cision regarding the maintenance strategy [3, 4]. 

As the literature review section shows, the existing research works are focusing on a wide 
range of optimization problems regarding maintenance, but only a few of them discuss the agile, 
condition-based maintenance. Based on this fact, the scope of this work is to propose a novel op-
timization approach to find a cost-efficient strategy for an agile, condition-based maintenance. 

This paper is organised as follows. Section 2 presents a literature review focusing on the topic 
of maintenance policy optimization. Section 3 proposes a novel mathematical model, which makes 
it possible to define the cost-efficient strategy for agile, corrective maintenance. The section de-
scribes the transformation of the conventional P-F curve into a discrete P-F curve, which makes it 
possible to discretize the lead time from the possible detection point to the functional failure. The 
model can be described as a Markov decision process. Section 4 discusses the results of the nu-
merical analysis of a scenario, which validates the mathematical model and the optimisation algo-
rithm. Conclusions, future research directions and managerial impacts are discussed in Section 5. 

2. Literature review 
Within the frame of this section, I summarise the main results of maintenance strategy optimiza-
tion related research results. I focus on the state-of-the-art technologies and give an overview of 
the most recent achievements in the field of maintenance strategy optimisation, in order to iden-
tify the bottlenecks that can be used to validate the research of agile, condition-based maintenance 
strategy optimization. 

Li et al [3] in a multi-objective maintenance optimization concluded, that in the case of uncer-
tain environment, it is possible, that the chosen maintenance strategy and performed mainte-
nance operation is inappropriate, therefore integrated decision-making methodologies can be 
used to improve the conventional decision-making models to probabilistic uncertainty models. As 
Shi et al. [4] in a research work focusing on preventive maintenance strategy found, it is important 
to focus on the lifecycle safety and availability of the maintained system, which applies especially 
to the preventive maintenance strategies, where the decomposition of lifecycle failure states and 
lifecycle failure probability plays also an important role in the modelling of the optimised mainte-
nance strategy. The integration of inspection and maintenance is a suitable, but challenging im-
provement direction of maintenance strategies. Guo and Liang [5] concluded in a study describing 
the optimization of maintenance strategies as predictive Markov decisions, that inspection and 
maintenance strategies must be flexible, because in the early phase of the lifecycle of the inspected 
and maintained system, predictive inspections are not needed as often as in later phase of the 
lifecycle of the system, which can lead to wastes of human and technological resources. The lifecy-
cle related problems are also discussed by Hernández et al. [6], and their approach shows, that 
the maintenance of networked assets with progressively deteriorating condition levels can also 
be optimized considering the dynamics of data traffic.  

Zhang et al. [7] found in a study regarding emergency maintenance, that the optimization of 
maintenance strategies is particularly complex when the scheduling of maintenance operations 
needs to be integrated with the scheduling of the operation of the system being maintained, a task 
that can become particularly complex for a hyper-connected complex system such as a high-speed 
railway lines. In this case, the rolling horizon framework is a suitable tool to perform real-time 
implementation of decisions and maintenance operations. Pinciroli et al. [8] discusses a same 
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topic, focusing on the integrated optimization of operation and maintenance of renewable energy 
systems. The reliability-centered maintenance (RCM) is suggested by Paoprasert et al. [9] to im-
prove key performance indicators of a HDD production system. As the study concluded, RCM is 
suitable to increase availability of machines and reliability of the manufacturing system. However, 
Industry 4.0 focuses on technology, but a survey on enabling technologies [10] shows, that the 
upcoming industrial revolution will be directed to the operators, which means, that the role of 
human resources in maintenance systems will continue to grow, despite increasing technological 
support, which will lead to new challenges, in particular for the training of human resources. Case 
studies validated by Mappas et al. [11], that automated maintenance operations can significantly 
increase the efficiency of maintenance operations. Based on these studies, we can conclude, that 
maintenance strategy optimization is an extensively researched topic, including a wide range of 
models, solution algorithms and application fields.  

The used models and methods include the followings: Monte Carlo method [3], stochastic sim-
ulation [4], Forward algorithm [5], Baum-Welch algorithm [5], Lagrangian relaxation [7], mixed-
integer nonlinear optimization [7], artificial intelligence [10], deep reinforcement learning [8] and 
Failure-Mode-and-Effect-Analysis (FMEA) [12], Fuzzy-TOPSYS [13], simulated annealing [14] and 
other heuristics [15]. The applications and case studies includes a wide range of industries: wind 
farms [3], high-speed railway [7], HDD manufacturing [9], automotive [12], injection moulding 
[16], offshore floating systems [17] and nuclear power plant [18] and they analyse different types 
of maintenance solutions including preventive [4], predictive [5, 19], emergency [7], condition-
based [12] and collaborative maintenance [20], and measurement of maintenance excellence from 
technical and financial point of view [21].  

The consequences of the literature review are the followings: 

• The articles that addressed the optimization of maintenance strategies are focusing on dif-
ferent maintenance types, but only a few of them discusses the agile, condition-based 
maintenance. 

• A wide range of research articles discuss the optimization of maintenance strategies using 
the conventional P-F curve [22], but the transformation of this continuous P-F curve into a 
discretised P-F curve to describe transition probabilities between different condition levels 
of machines and plant is not discussed as a potential tool to integrate the cost efficiency of 
both manufacturing and maintenance. Therefore, this research topic still needs more atten-
tion and research. 

• Mathematical models and solution algorithms are important tools for the optimization of 
maintenance strategies, which can lead to increased quality [23]. According to that, the main 
goal of this research is to propose a novel mathematical model and solution algorithm to 
support the optimization of agile condition-based maintenance. 

3. Materials and methods 
Developing an optimal strategy for maintenance processes can be defined as an assignment prob-
lem, where maintenance operations of different types, depth and cost are assigned to the techno-
logical and logistics resources, in order to ensure the efficient, smooth operation of the production 
process and improve the availability of machines and plant. The following assumptions can be 
used in this assignment task. We can define different conditions of the technological and logistics 
system, which can be monitored accurately in real-time either by a digital twin solution or by a 
conventional sensor-based monitoring of technological and logistics resources as a digital shadow 
of the real-world system: 

𝐶𝐶 = (𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑖𝑖,⋯ , 𝑐𝑐𝛼𝛼) (1) 

where 𝑐𝑐𝑖𝑖 is the condition level i of the system and state i of the system and 𝛼𝛼 defines the potential 
conditional levels depending on the condition levels of technological and logistics resources. Con-
dition monitoring makes it possible to collect information regarding the condition of the techno-
logical and logistics resources including temperature, pressure, vibration, abrasion, noise. The 
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condition level of the system significantly influences the availability of the machines and plant, 
because low condition level can lead to downtime or increased reject rate (lower product quality). 

The transition between these condition levels can occur for two reasons. One is when the con-
dition of the system decreases during continuous operation, causing the system's condition level 
to decrease. The other is when the condition of the machines and the plant improves because of a 
maintenance or condition improvement operation. We can also define a set of potential mainte-
nance operations (or maintenance levels) which can significantly influence the transition between 
two potential condition levels. 

𝑀𝑀𝑞𝑞 = (𝑚𝑚1
𝑞𝑞 ,𝑚𝑚2

𝑞𝑞 ,⋯ ,𝑚𝑚𝑗𝑗
𝑞𝑞 ,⋯ ,𝑚𝑚𝛽𝛽

𝑞𝑞) (2) 

where 𝑚𝑚𝑗𝑗
𝑞𝑞 is the potential maintenance operation j for maintenance strategy q, 𝛽𝛽 is the upper limit 

of potential maintenance operations. We can define the upper limit of the maintenance operations 
as a dynamic parameter, because depending on the new, unknown condition levels, new mainte-
nance operations can be defined and set up. It means, that 𝛼𝛼 = 𝛼𝛼(𝑡𝑡) and 𝛼𝛼 = 𝛼𝛼(𝑡𝑡). 

The above-mentioned transition probabilities can statistically describe the probability be-
tween two predefined condition levels. For example, if a drilling machine is working properly 
(condition level 1) but the temperature of the drilling tool exceeds 175° C (condition level 2) than 
it can lead to decreased product quality (condition level 3) and it can also lead to failure in product 
(condition level 4) and machine (condition level 5). The transition probabilities  

The transition probabilities define the basis for the selection of the optimal maintenance oper-
ation, as different maintenance operations lead to different condition levels. 

∀𝛾𝛾: � 𝑡𝑡𝑖𝑖𝑖𝑖 = 1 
𝛼𝛼

𝑖𝑖=1
 (3) 

where 𝑇𝑇 = �𝑡𝑡𝑖𝑖𝑖𝑖� is the transition probability matrix defining the transition probability between 
condition level i and condition level 𝛾𝛾. 

In conventional condition-based maintenance models, the P-F curve describes that as a failure 
starts manifesting, the machine or plant deteriorates to the point at which it can possibly be de-
tected (point P). If the failure is not detected, it continues until a functional failure occurs (point 
F) [23]. Using transition probabilities of potential condition levels of machines and plant, it is pos-
sible to transform this conventional P-F curve into a discretised P-F curve, as Fig. 1 shows. 

We can assign cost to both to these condition levels, reflecting machine and system availability, 
productivity, and product quality and to the maintenance operations. 

It is important to note, that the elements of the transition matrix are highly influenced by 
maintenance operations. If maintenance operation 𝛿𝛿 is performed in the case of condition level i 
of the system, then the transition probability from condition level i to condition level j of the sys-
tem is not necessarily the same as the transition between condition level i to condition level j of 
the system. The reason for this is, that the maintenance operation results a condition level im-
provement from condition level i to a new condition level k, and the probability of a transition 
from condition level i to condition level j is therefore depends on the transition between condition 
level k and condition level j. 

 

 
Fig. 1 Discretized P-F curve describing transition probabilities between condition levels 
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𝑝𝑝�𝑐𝑐𝑗𝑗�𝑐𝑐𝑖𝑖 ,𝑚𝑚𝛿𝛿� ∈ T ∧  𝑝𝑝�𝑐𝑐𝑗𝑗�𝑐𝑐𝑖𝑖,𝑚𝑚𝛿𝛿� ≤ 𝑡𝑡𝑖𝑖𝑗𝑗  ∨  𝑝𝑝�𝑐𝑐𝑗𝑗�𝑐𝑐𝑖𝑖,𝑚𝑚𝛿𝛿� ≥ 𝑡𝑡𝑖𝑖𝑗𝑗  (4) 

When planning maintenance processes, we can use different objective functions to find the op-
timal solution. In my previous study [24], I have shown the energy efficiency-based maintenance 
policy optimization. In this model, the discounted profit based on the maintenance cost and cost 
of lost production is the objective function. The optimization problem is a Markov decision prob-
lem; therefore, it is also an infinite horizon probabilistic dynamic programming problem, and the 
objective function is the optimization of the discounted profit as follows: 

𝐷𝐷𝐷𝐷0(𝑐𝑐𝑖𝑖) = 𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖,𝑚𝑚𝛿𝛿(𝑐𝑐𝑖𝑖) + 𝜀𝜀 ∙ ∑ 𝑝𝑝 �𝑐𝑐𝑗𝑗�𝑐𝑐𝑖𝑖 ,𝑚𝑚𝛿𝛿(𝑐𝑐𝑖𝑖)�
𝛽𝛽
𝛿𝛿=1 𝐷𝐷𝐷𝐷0�𝑐𝑐𝑗𝑗�  (5) 

where: 𝐷𝐷𝐷𝐷0(𝑐𝑐𝑖𝑖) is the expected discounted profit depending on the condition level of the manu-
facturing system, 𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖,𝑚𝑚𝛿𝛿(𝑐𝑐𝑖𝑖) is the expected profit depending on the chosen maintenance opera-
tion 𝑚𝑚𝛿𝛿 and condition level 𝑐𝑐𝑖𝑖, 𝜀𝜀 is the discounting factor, which can significantly influence the 
value of the objective function, because higher discounting factor lead to higher discounted profit. 

The expected profit can be defined in many ways. In this approach, the expected profit is de-
fined depending on the following parameters: expected income resulted by MRP (Materials Re-
quirement Planning), lost value caused by the downtime and cost of maintenance operations:   

H𝑀𝑀
0 (𝑐𝑐𝑖𝑖) = max

𝑚𝑚𝛿𝛿∈𝑀𝑀(𝑐𝑐𝑖𝑖)
�𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖,𝑚𝑚𝛿𝛿(𝑐𝑐𝑖𝑖) + 𝜀𝜀 ∙ ∑ 𝑝𝑝 �𝑐𝑐𝑗𝑗�𝑐𝑐𝑖𝑖 ,𝑚𝑚𝛿𝛿(𝑐𝑐𝑖𝑖)�

𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚
𝛿𝛿=1 𝐷𝐷𝐷𝐷0�𝑐𝑐𝑗𝑗��  (6) 

where H𝑀𝑀
0 (𝑐𝑐𝑖𝑖) is the Howard’s parameter in the case of condition level i of the manufacturing sys-

tem. Based on Eqs. 5 and 6 we can compare the Howard’s parameter and the discounted profit 
value. If the Howard’s parameter is equal to the discounted profit, then M is the optimal mainte-
nance strategy. Otherwise, the maintenance operations assigned to each condition level must be 
changed and then both parameters must be recomputed. 

4. Results and discussion 
Within the frame of the scenario analysis, a U-shaped manufacturing system is analysed including 
10 machines. 10 different conditions levels of the manufacturing system are defined: 𝐶𝐶 =
(𝑐𝑐1,⋯ , 𝑐𝑐10), where 𝑐𝑐1 represents the best condition level, as Table 1 shows. 

 

Table 1 Transition probabilities of condition levels in the manufacturing system 
𝑇𝑇 = �𝑡𝑡𝑖𝑖𝑖𝑖� 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑐6 𝑐𝑐7 𝑐𝑐8 𝑐𝑐9 𝑐𝑐10 

𝑐𝑐1 0.6 0.25 0.1 0.05 0 0 0 0 0 0 
𝑐𝑐2 0 0.5 0.3 0.1 0.1 0 0 0 0 0 
𝑐𝑐3 0 0 0.82 0.11 0.05 0.02 0 0 0 0 
𝑐𝑐4 0 0 0 0.4 0.3 0.15 0.07 0.05 0.03 0 
𝑐𝑐5 0 0 0 0 0.7 0.2 0.1 0 0 0 
𝑐𝑐6 0 0 0 0 0 0.5 0.4 0.1 0 0 
𝑐𝑐7 0 0 0 0 0 0 0.7 0.2 0.1 0 
𝑐𝑐8 0 0 0 0 0 0 0 0.6 0.4 0 
𝑐𝑐9 0 0 0 0 0 0 0 0 0.8 0.2 
𝑐𝑐10 0 0 0 0 0 0 0 0 0 1 

There are 10 potential maintenance operations in this scenario, which can be performed de-
pending on the current condition level of the manufacturing system. The OMS (online monitoring 
system) makes it possible to collect data regarding condition level of the machines and plant and 
defines the expected transition possibilities between condition. 

Maintenance operations are assigned to each condition level of the manufacturing system. The 
probability that the production system will move from one condition level to another can be de-
termined by computing the condition level resulted from the maintenance operation and after 
that we can calculate the transition probability. As an example, in the case of transition probability 
𝑡𝑡35, we can calculate the potential values as: 

𝑝𝑝(𝑐𝑐5|𝑐𝑐3,𝑚𝑚0) = 𝑝𝑝(𝑐𝑐5|𝑐𝑐4,𝑚𝑚1) = ⋯ = 𝑝𝑝(𝑐𝑐9|𝑐𝑐9,𝑚𝑚6) = 𝑝𝑝(𝑐𝑐9|𝑐𝑐10,𝑚𝑚7) = 𝑡𝑡35 = 0.05  (7) 
and this calculation of transition probabilities can be generalized as follows: 
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𝑝𝑝∀ 𝜌𝜌 − 𝜎𝜎 = 𝛾𝛾 ∧ 𝑡𝑡iγ > 0:𝑝𝑝�𝑐𝑐𝑖𝑖�𝑐𝑐𝜌𝜌,𝑚𝑚𝜎𝜎� = 𝑡𝑡iγ (8) 

Let the expected income resulted by the material requirement planning be 𝑐𝑐(𝑀𝑀𝑀𝑀𝐷𝐷) = 30000 €. 
The lost value of the manufacturing process, depending on the condition level of the manufactur-
ing system can be also defined as follows as shown in Table 2: 

𝑙𝑙𝑙𝑙𝑐𝑐𝑖𝑖 = 𝑖𝑖𝑙𝑙𝑙𝑙𝜑𝜑𝑐𝑐𝑖𝑖  (9) 

where 𝑖𝑖𝑙𝑙𝑙𝑙 is the initial lost value, which is in this scenario 12000 €, 𝜑𝜑 is the specific parameter 
influencing the lost value depending on the condition level of the manufacturing system. 

We can define in the same way the maintenance cost depending on the condition level of the 
manufacturing system and the performed maintenance operation as follows: 

𝑚𝑚𝑐𝑐𝑐𝑐𝑖𝑖,𝑚𝑚𝛿𝛿(𝑐𝑐𝑖𝑖) = 𝑖𝑖𝑚𝑚𝑐𝑐𝜔𝜔
𝑚𝑚𝛿𝛿   (10) 

where 𝑖𝑖𝑚𝑚𝑐𝑐 is the initial maintenance cost, which is in this scenario 2500 €, 𝜔𝜔 is the specific pa-
rameter influencing the maintenance cost depending on the condition level of the manufacturing 
system and the performed maintenance operation. The computed values of the scenario analysis 
are shown in Table 3. 

As Table 3 shows, the maintenance operation have increased cost depending of the complexity 
of them, because complex maintenance operations can lead to a more significant condition level 
improvement of the machines and plant. 

Based on Eqs. 6, 9, and 10 we can compute the expected profit of the scenario depending on 
the current condition level of the machines and plant and the assigned maintenance operation, as 
shown in Table 4. Let define the initial maintenance strategy by the assignment of maintenance 
operations to condition levels as given: 

𝐴𝐴0 = �𝑎𝑎𝑐𝑐𝑖𝑖
0 � = [𝑚𝑚0,𝑚𝑚1,𝑚𝑚1,𝑚𝑚2,𝑚𝑚1,𝑚𝑚3,𝑚𝑚2,𝑚𝑚1,𝑚𝑚4,𝑚𝑚2] (11) 

where 𝑎𝑎𝑐𝑐𝑖𝑖
0 = 𝑚𝑚𝜋𝜋, and is the maintenance operation 𝜋𝜋 is assigned to condition level 𝑐𝑐𝑖𝑖 in the initial 

phase of the optimization. 
 

Table 2 Lost value of the manufacturing system depending on the condition level in (€) 
𝑐𝑐𝑖𝑖  𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑐6 𝑐𝑐7 𝑐𝑐8 𝑐𝑐9 𝑐𝑐10 
𝑙𝑙𝑙𝑙𝑐𝑐𝑖𝑖  18000 17185 16307 15363 14347 13252 12072 10800 9427 7946 

 
Table 3 Maintenance cost depending on the condition level and maintenance operation in (€) 

𝑚𝑚𝑖𝑖  𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 𝑚𝑚4 𝑚𝑚5 𝑚𝑚6 𝑚𝑚7 𝑚𝑚8 𝑚𝑚9 
𝑚𝑚𝑐𝑐𝑐𝑐𝑖𝑖,𝑚𝑚𝛿𝛿(𝑐𝑐𝑖𝑖) 2500 4734 6641 9443 13618 19929 29611 44701 68601 

 
Table 4 Expected profit of the scenario in (€) 

𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖,𝑚𝑚𝛿𝛿(𝑐𝑐𝑖𝑖) 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑐6 𝑐𝑐7 𝑐𝑐8 𝑐𝑐9 𝑐𝑐10 
𝑚𝑚0 18000 17185 16307 15363 14347 13252 12072 10800 9427 7946 
𝑚𝑚1 - 15500 14685 13807 12863 11847 10752 9572 8300 6927 
𝑚𝑚2 - - 13266 12451 11573 10629 9613 8518 7338 6066 
𝑚𝑚3 - - - 11359 10544 9666 8722 7706 6611 5431 
𝑚𝑚4 - - - - 8557 7742 6864 5920 4904 3809 
𝑚𝑚5 - - - - - 4382 3566 2689 1745 729 
𝑚𝑚6 - - - - - - -1929 -2744 -3621 -4565 
𝑚𝑚7 - - - - - - - -11611 -12427 -13304 
𝑚𝑚8 - - - - - - - - -26701 -27516 
𝑚𝑚9 - - - - - - - - - -50601 

 
Once the input parameters for the scenario have been defined, the discounted profit of the ini-

tial maintenance strategy can be computed based on Eq. 5 solving the following value definition 
equations: 
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𝐷𝐷𝐷𝐷0(𝑐𝑐1) = 𝑝𝑝𝑝𝑝𝑐𝑐1,𝑚𝑚0 + 𝜀𝜀 ∙ ∑ 𝑡𝑡1𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)4
𝜃𝜃=1   

𝐷𝐷𝐷𝐷0(𝑐𝑐2) = 𝑝𝑝𝑝𝑝𝑐𝑐2,𝑚𝑚1 + 𝜀𝜀 ∙ ∑ 𝑡𝑡1𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)4
𝜃𝜃=1   

𝐷𝐷𝐷𝐷0(𝑐𝑐3) = 𝑝𝑝𝑝𝑝𝑐𝑐3,𝑚𝑚1 + 𝜀𝜀 ∙ ∑ 𝑡𝑡2𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)5
𝜃𝜃=2   

𝐷𝐷𝐷𝐷0(𝑐𝑐4) = 𝑝𝑝𝑝𝑝𝑐𝑐4,𝑚𝑚2 + 𝜀𝜀 ∙ ∑ 𝑡𝑡2𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)5
𝜃𝜃=2   

𝐷𝐷𝐷𝐷0(𝑐𝑐5) = 𝑝𝑝𝑝𝑝𝑐𝑐5,𝑚𝑚1 + 𝜀𝜀 ∙ ∑ 𝑡𝑡4𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)9
𝜃𝜃=4   

𝐷𝐷𝐷𝐷0(𝑐𝑐6) = 𝑝𝑝𝑝𝑝𝑐𝑐6,𝑚𝑚3 + 𝜀𝜀 ∙ ∑ 𝑡𝑡3𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)6
𝜃𝜃=3   

𝐷𝐷𝐷𝐷0(𝑐𝑐7) = 𝑝𝑝𝑝𝑝𝑐𝑐7,𝑚𝑚2 + 𝜀𝜀 ∙ ∑ 𝑡𝑡5𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)7
𝜃𝜃=5   

𝐷𝐷𝐷𝐷0(𝑐𝑐8) = 𝑝𝑝𝑝𝑝𝑐𝑐8,𝑚𝑚1 + 𝜀𝜀 ∙ ∑ 𝑡𝑡7𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)9
𝜃𝜃=7   

𝐷𝐷𝐷𝐷0(𝑐𝑐9) = 𝑝𝑝𝑝𝑝𝑐𝑐9,𝑚𝑚4 + 𝜀𝜀 ∙ ∑ 𝑡𝑡5𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)7
𝜃𝜃=5   

𝐷𝐷𝐷𝐷0(𝑐𝑐10) = 𝑝𝑝𝑝𝑝𝑐𝑐10,𝑚𝑚2 + 𝜀𝜀 ∙ ∑ 𝑡𝑡8𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)9
𝜃𝜃=8   

(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 

The solution of the above-mentioned value definition equations resulted the discounted profit 
for the initial maintenance strategy describing the assignment of maintenance strategies to con-
dition levels of the machines and plant shown in Table 5.  

As Table 5 shows, the condition level of the machines and plant has a significant impact on the 
discounted value, because lower condition levels lead to lower discounted value. 
 

Table 5 Discounted profit for the initial maintenance strategy in (€) 
 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑐6 𝑐𝑐7 𝑐𝑐8 𝑐𝑐9 𝑐𝑐10 

𝐷𝐷𝐷𝐷0(𝑐𝑐𝑖𝑖) 324528 322028 316994 314760 306318 309936 300776 293474 296067 285852 
 

The next phase of the optimization is to check the validity of the initial maintenance strategy. 
Based on Eq. 6, it is possible to calculate the Howard’s parameter for each condition level of the 
machines and plant, and then modify the initial maintenance strategy based on the maximum 
value of the Howard’s parameter. In the case of 𝑐𝑐1 condition level, the Howard’s parameter is the 
same the discounted value, therefore no maintenance strategy modification is required in the sec-
ond iteration phase. 

H𝑀𝑀
0 (𝑐𝑐1) = 𝐷𝐷𝐷𝐷0(𝑐𝑐1) → 𝑎𝑎𝑐𝑐1

1 = 𝑎𝑎𝑐𝑐1
0 = 𝑚𝑚0 (22) 

In the case of 𝑐𝑐2 condition level, we can calculate the Howard’s parameter based on Eq. 6, as 
follows: 

H𝑀𝑀
0 (𝑐𝑐2) = 𝑚𝑚𝑎𝑎𝑚𝑚 �

𝑚𝑚0 → 𝑝𝑝𝑝𝑝𝑐𝑐2,𝑚𝑚0 + 𝜀𝜀 ∙ ∑ 𝑡𝑡2𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)5
𝜃𝜃=2

𝑚𝑚1 → 𝑝𝑝𝑝𝑝𝑐𝑐2,𝑚𝑚1 + 𝜀𝜀 ∙ ∑ 𝑡𝑡1𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)4
𝜃𝜃=1

  (23) 

The comparison of the Howard’s parameter and the discounted value shows, that no mainte-
nance strategy change is required in the case of condition level 𝑐𝑐2. 

H𝑀𝑀
0 (𝑐𝑐2) = 𝐷𝐷𝐷𝐷0(𝑐𝑐2) → 𝑎𝑎𝑐𝑐2

1 = 𝑎𝑎𝑐𝑐2
0 = 𝑚𝑚1  (24) 

In the case of 𝑐𝑐3 condition level, we can calculate the Howard’s parameter in the same way: 

H𝑀𝑀
0 (𝑐𝑐3) = 𝑚𝑚𝑎𝑎𝑚𝑚 �

𝑚𝑚0 → 𝑝𝑝𝑝𝑝𝑐𝑐3,𝑚𝑚0 + 𝜀𝜀 ∙ ∑ 𝑡𝑡3𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)6
𝜃𝜃=3

𝑚𝑚1 → 𝑝𝑝𝑝𝑝𝑐𝑐3,𝑚𝑚1 + 𝜀𝜀 ∙ ∑ 𝑡𝑡3𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)5
𝜃𝜃=2

𝑚𝑚2 → 𝑝𝑝𝑝𝑝𝑐𝑐3,𝑚𝑚2 + 𝜀𝜀 ∙ ∑ 𝑡𝑡3𝜃𝜃 ∙ 𝐷𝐷𝐷𝐷0(𝑐𝑐𝜃𝜃)4
𝜃𝜃=1

    (25) 

The comparison of the Howard’s parameter and the discounted value shows, that we can 
change maintenance operation 𝑚𝑚1 to maintenance operation 𝑚𝑚2 assigned to condition level 𝑐𝑐3. 

H𝑀𝑀
0 (𝑐𝑐3) > 𝐷𝐷𝐷𝐷0(𝑐𝑐3) → 𝑎𝑎𝑐𝑐3

1 ≠ 𝑎𝑎𝑐𝑐3
0 → 𝑎𝑎𝑐𝑐3

1 = 𝑚𝑚2   (26) 

This maintenance operation change resulted a 2801 € additional discounted profit in the case 
of condition level 𝑐𝑐3. We can calculate the new maintenance operations assigned to each condition 
level leading to increased discounted profit in the same way. As Table 6 shows, the iterative meth-



Bányai 
 

324 Advances in Production Engineering & Management 18(3) 2023 
 

odology after the first iteration phase lead to the change of 8 assignment of maintenance opera-
tions to condition levels, and the value of the total additional discounted value can be calculated 
as follows: 

∀𝑧𝑧 > 0:𝑇𝑇𝐴𝐴𝐷𝐷𝐷𝐷𝑧𝑧 = ∑ 𝐴𝐴𝐷𝐷𝐷𝐷𝑧𝑧(𝑐𝑐𝑖𝑖)𝛼𝛼
𝑖𝑖=1 = ∑ 𝐷𝐷𝐷𝐷𝑧𝑧(𝑐𝑐𝑖𝑖) − 𝐷𝐷𝐷𝐷𝑧𝑧−0(𝑐𝑐𝑖𝑖)𝛼𝛼

𝑖𝑖=1 = 39446 €   (27) 

where 𝑇𝑇𝐴𝐴𝐷𝐷𝐷𝐷𝑧𝑧 is the total additional discounted value after iteration phase z, 𝐴𝐴𝐷𝐷𝐷𝐷𝑧𝑧(𝑐𝑐𝑖𝑖) is the ad-
ditional discounted value after iteration phase z in the case of condition level i. 

The above-described iterative calculation process must be continued as long as it is possible to 
increase the total discounted value by changing the maintenance strategy. The final result of the 
maintenance strategy optimisation is shown in Table 7. 
 

Table 6 The increased discounted value per condition level in (€) and the assignment of maintenance strategies 
      and condition levels after the first iteration 

 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑐6 𝑐𝑐7 𝑐𝑐8 𝑐𝑐9 𝑐𝑐10 
𝑎𝑎𝑐𝑐𝑖𝑖
1  𝑚𝑚0 𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 𝑚𝑚4 𝑚𝑚5 𝑚𝑚6 𝑚𝑚5 𝑚𝑚6 𝑚𝑚4 

𝐴𝐴𝐷𝐷𝐷𝐷1(𝑐𝑐𝑖𝑖) 0 0 2801 3128 8768 975 6358 9484 581 7352 
 

Table 7 The increased discounted value per condition level in (€) and the assignment of maintenance strategies 
  and condition levels after the first iteration 

 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑐6 𝑐𝑐7 𝑐𝑐8 𝑐𝑐9 𝑐𝑐10 
𝑎𝑎𝑐𝑐𝑖𝑖
3  𝑚𝑚0 𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 𝑚𝑚4 𝑚𝑚5 𝑚𝑚6 𝑚𝑚5 𝑚𝑚4 𝑚𝑚9 

𝐴𝐴𝐷𝐷𝐷𝐷3(𝑐𝑐𝑖𝑖) 8294 8294 11095 11421 17061 10823 17180 20307 14258 20298 
 

Based on the above discussed methodology, it can be concluded that the optimization of the 
maintenance strategy and the modification of the assignment of maintenance operations to ma-
chines can significantly contribute to the increase of the efficiency of the production system, since 
an overall increase of 130030 € in discounted value was achieved. 

For the optimization method presented above, it is important to perform a sensitivity analysis 
of the objective function for some parameters. By analysing the impact of the maintenance cost 
and the discount rate on the discounted value, it can be concluded that an increase in the mainte-
nance cost decreases the discounted value obtained by the maintenance strategy. This finding 
seems trivial, but the impact of the maintenance cost on the discounted value is not trivial, since 
a given increase in the maintenance cost does not change the discounted value resulting from the 
strategy to the same extent, since the productivity resulting from the condition level of the ma-
chines can be modelled as a Markov process with transition probabilities, as illustrated in Fig. 2.  

 

 
Fig. 2 Impact of maintenance cost and discount rate on discounted value of agile maintenance strategy 

 
Fig. 2 also shows how a decrease in the discount rate has a decreasing effect on the discounted 

value, a relationship that can also be explained by the transition probabilities between the condi-
tion levels of the machines. Based on this line of thinking, it can be seen that the maintenance costs 
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influenced by the maintenance operations, the revenues associated with the condition levels of 
machines and plant and other system parameters have a significant impact on the discounted 
value that can be achieved by implementing an agile maintenance strategy. 

5. Conclusion 
Optimising maintenance processes is an increasingly important goal of production companies. 
This is because, in order to meet the dynamically changing customer demands in a cost-effective 
way, the machines in the production system must be available at all times in a condition to pro-
duce a product of the right quality. In this paper, the author presents a maintenance strategy op-
timization methodology that is suitable for modelling the transitions between the condition levels 
of the manufacturing system as Markov chains and is suitable for efficient application of Markov 
decision process to select the optimal maintenance strategy. The presented iteration-based meth-
odology is suitable for determining the optimal maintenance strategy. The essence of this meth-
odology is that for each condition level the optimal maintenance operation can be determined, as 
a result of which the discounted value associated with that condition level can be increased, i.e. 
the lost value caused by downtime or rejected products can be reduced. 

A new methodology has been developed in this research work and its applicability has been 
validated by the numerical analysis of a case study. After validation of the methodology, the fol-
lowing conclusions can be drawn: 

• Optimisation of the maintenance strategy can significantly improve the efficiency of pro-
duction systems, thereby enhancing product quality. The discounted value as a metric can 
be well used to measure this improvement. 

• The presented iterative method is not only suitable for the optimization of small-scale tasks 
but is also well suited for multi-machine manufacturing systems, since the presented meth-
odology does not include complex computational procedures that would be computation-
ally expensive, i.e. the presented optimization task does not belong to the NP-hard optimi-
zation problems. 

• The maintenance strategy is optimized in iterative steps. In each iteration phase, the dis-
counted value is gradually increased.  

The presented new methodology is important not only for the academy, but its practical ap-
plicability can also be significant since it can greatly contribute to the enhancement of the com-
petitiveness of production companies by increasing the efficiency and availability of the manufac-
turing systems. 

The research presented also has implications for managerial decisions, as the optimisation of 
the maintenance strategy can significantly influence the optimization of technological, logistics 
and human resources, and decisions can be taken on the outsourcing of certain processes (for 
example, the decision to outsource maintenance processes can be justified). The application of 
machine learning solutions can be defined as a potential future research direction. Cooperation 
and networking make it possible to improve the efficiency of maintenance operations [27], there-
fore the second potential future research direction is the development of novel optimization 
methods for networking companies. 

References 
[1] Fortune Business Inside. Inspection, repair and maintenance market, from https://www.fortunebusi-

nessinsights.com/inspection-repair-and-maintenance-market-102983, accessed May 2, 2023. 
[2] Telek, P. (2023). Logistics activities of maintenance processes, Advanced Logistic Systems - Theory and Practice, 

Vol. 17, No. 1, 49-54, doi: 10.32971/als.2023.006. 
[3] Gao, G., Zhou, D., Tang, H., Hu, X. (2021). An intelligent health diagnosis and maintenance decision-making ap-

proach in smart manufacturing, Reliability Engineering and System Safety, Vol. 216, Article No. 107965, doi: 
10.1016/j.ress.2021.107965. 

[4] Cortés-Leal, A., Cárdenas, C., Del-Valle-Soto, C. (2022). Maintenance 5.0: Towards a worker-in-the-loop framework 
for resilient smart manufacturing, Applied Sciences, Vol. 12, No. 22, Article No. 11330, doi: 10.3390/ 
app122211330. 

https://www.fortunebusinessinsights.com/inspection-repair-and-maintenance-market-102983
https://www.fortunebusinessinsights.com/inspection-repair-and-maintenance-market-102983
https://doi.org/10.32971/als.2023.006
https://doi.org/10.1016/j.ress.2021.107965
https://doi.org/10.1016/j.ress.2021.107965
https://doi.org/10.3390/app122211330
https://doi.org/10.3390/app122211330


Bányai 
 

326 Advances in Production Engineering & Management 18(3) 2023 
 

[5] Li, M., Jiang, X., Carroll, J., Negenborn, R.R. (2022) A multi-objective maintenance strategy optimization framework 
for offshore wind farms considering uncertainty, Applied Energy, Vol. 321, Article No. 119284, doi: 10.1016/ 
j.apenergy.2022.119284. 

[6] Shi, Y., Lu, Z., Huang, H., Liu, Y., Li, Y., Zio, E., Zhou, Y. (2022). A new preventive maintenance strategy optimization 
model considering lifecycle safety, Reliability Engineering & System Safety, Vol. 221, Article No. 108325, doi: 
10.1016/j.ress.2022.108325. 

[7] Guo, C., Liang, Z. (2022). A predictive Markov decision process for optimizing inspection and maintenance strate-
gies of partially observable multi-state systems, Reliability Engineering & System Safety, Vol. 226, Article No. 
108683, doi: 10.1016/j.ress.2022.108683. 

[8] Pérez Hernández, M. Puchkova, A., Parlikad, A.K. (2022). Maintenance strategies for networked assets, IFAC-Paper-
sOnLine, Vol. 55, No. 19, 151-156, doi: 10.1016/j.ifacol.2022.09.199.  

[9] Zhang, H., Li, S., Wang, Y., Yang, L., Gao, Z. (2021). Collaborative real-time optimization strategy for train resched-
uling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition al-
gorithm, Omega, Vol. 102, Article No. 102371, doi: 10.1016/j.omega.2020.102371. 

[10] Pinciroli, L., Baraldi, P., Ballabio, G., Compare, M., Zio, E. (2022). Optimization of the operation and maintenance of 
renewable energy systems by deep reinforcement learning, Renewable Energy, Vol. 183, 752-763, doi: 10.1016/ 
j.renene.2021.11.052. 

[11] Paoprasert, N., Lin, W.Y.H., Muneekaew, T. (2022). Assessing risk priority numbers of failures in the screw tight-
ening machine of a hard disk drive production system, Journal of Machine Engineering, Vol. 22, No. 1, 124-137, doi: 
10.36897/jme/145272. 

[12] Mourtzis, D., Angelopoulos, J., Panopoulos, N. (2022). Operator 5.0: A survey on enabling technologies and a frame-
work for digital manufacturing based on extended reality, Journal of Machine Engineering, Vol. 22, No. 1, 43-69, 
doi: 10.36897/jme/147160. 

[13] Mappas, V., Vassiliadis, V.S., Dorneanu, B., Routh, A.F., Arellano-Garcia, H. (2022). Maintenance scheduling optimi-
sation of Reverse Osmosis Networks (RONs) via a multistage Optimal Control reformulation, Desalination, Vol. 
543, Article No. 116105, doi: 10.1016/j.desal.2022.116105.  

[14] Ramere, M.D., Laseinde, O.T. (2021). Optimization of condition-based maintenance strategy prediction for aging 
automotive industrial equipment using FMEA, Procedia Computer Science, Vol. 180, 229-238, doi: 10.1016/ 
j.procs.2021.01.160. 

[15] Patalas-Maliszewska, J., Losyk, H. (2022). An approach to maintenance sustainability level assessment integrated 
with Industry 4.0 technologies using Fuzzy-TOPSIS: A real case study, Advances in Production Engineering & Man-
agement, Vol. 17, No. 4, 455-468, doi: 10.14743/apem2022.4.448.  

[16] Diaz Cazanas, R., Delgado Sobrino, D.R., Caganova, D., Kostal, P., Velisek, K. (2019). Joint programming of produc-
tion-maintenance tasks: A Simulated Annealing-based method, International Journal of Simulation Modelling, Vol. 
18, No. 4, 666-677, doi: 10.2507/IJSIMM18(4)503. 

[17] Xu, E.B., Yang, M.S., Li, Y., Gao, X.Q., Wang, Z.Y., Ren, L.J. (2021). A multi-objective selective maintenance optimiza-
tion method for series-parallel systems using NSGA-III and NSGA-II evolutionary algorithms, Advances in Produc-
tion Engineering & Management, Vol. 16, No. 3, 372-384, doi: 10.14743/apem2021.3.407. 

[18] Bleicher, F., Ramsauer, C., Leonhartsberger, M., Lamprecht, M., Stadler, P., Strasser, D., Wiedermann, C. (2021). 
Tooling systems with integrated sensors enabling data based process optimization, Journal of Machine Engineer-
ing, Vol. 21, No. 1, 5-21, doi: 10.36897/jme/134244.  

[19] George, B., Loo, J., Jie, W. (2023). Novel multi-objective optimisation for maintenance activities of floating produc-
tion storage and offloading facilities, Applied Ocean Research, Vol. 130, Article No. 103440, doi: 10.1016/ 
j.apor.2022.103440.  

[20] Peng, H., Wang, Y., Zhang, X., Hu, Q., Xu, B. (2022). Optimization of preventive maintenance of nuclear safety-class 
DCS based on reliability modeling, Nuclear Engineering and Technology, Vol. 54, No. 10, 3595-3603, doi: 10.1016/ 
j.net.2022.05.011.  

[21] Farahani, A., Tohidi, H., Shoja, A. (2019). An integrated optimization of quality control chart parameters and pre-
ventive maintenance using Markov chain, Advances in Production Engineering & Management, Vol. 14, No. 1, 5-14, 
doi: 10.14743/apem2019.1.307. 

[22] Tavakoli Kafiabad, S., Zanjani, M.K., Nourelfath, M. (2022). Robust collaborative maintenance logistics network 
design and planning, International Journal of Production Economics, Vol. 244, Article No. 108370, doi: 10.1016/ 
j.ijpe.2021.108370.  

[23] Djurović, D., Bulatović, M., Soković, M., Stoić, A. (2015). Measurement of maintenance excellence, Tehnički Vjesnik 
– Technical Gazette, Vol. 22, No. 5, 1263-1268, doi: 10.17559/TV-20140922094945. 

[24] Orošnjak, M., Brkljač, N., Šević, D., Čavić, M., Oros, D., Penčić, M. (2023). From predictive to energy-based mainte-
nance paradigm: Achieving cleaner production through functional-productiveness, Journal of Cleaner Production, 
Vol. 408, Article No. 137177, doi: 10.1016/j.jclepro.2023.137177. 

[25] Hupje, E. 9 Types of maintenance: How to choose the right maintenance strategy, from https://roadtoreliabil-
ity.com/types-of-maintenance/#h-condition-based-maintenance-cbm, accessed April 22, 2023. 

[26] Bányai, Á. (2021). Energy consumption-based maintenance policy optimization, Energies, Vol. 14, No. 18, Article 
No. 5674, doi: 10.3390/en14185674. 

[27] Bányai, T., Veres, P., Illés, B. (2015). Heuristic supply chain optimization of networked maintenance companies, 
Procedia Engineering, Vol. 100, 46-55, doi: 10.1016/j.proeng.2015.01.341. 

 

https://doi.org/10.1016/j.apenergy.2022.119284
https://doi.org/10.1016/j.apenergy.2022.119284
https://doi.org/10.1016/j.ress.2022.108325
https://doi.org/10.1016/j.ress.2022.108325
https://doi.org/10.1016/j.ress.2022.108683
https://doi.org/10.1016/j.ifacol.2022.09.199
https://doi.org/10.1016/j.omega.2020.102371
https://doi.org/10.1016/j.renene.2021.11.052
https://doi.org/10.1016/j.renene.2021.11.052
https://doi.org/10.36897/jme/145272
https://doi.org/10.36897/jme/145272
https://doi.org/10.36897/jme/147160
https://doi.org/10.1016/j.desal.2022.116105
https://doi.org/10.1016/j.procs.2021.01.160
https://doi.org/10.1016/j.procs.2021.01.160
https://doi.org/10.14743/apem2022.4.448
https://doi.org/10.2507/IJSIMM18(4)503
https://doi.org/10.14743/apem2021.3.407
https://doi.org/10.36897/jme/134244
https://doi.org/10.1016/j.apor.2022.103440
https://doi.org/10.1016/j.apor.2022.103440
https://doi.org/10.1016/j.net.2022.05.011
https://doi.org/10.1016/j.net.2022.05.011
https://doi.org/10.14743/apem2019.1.307
https://doi.org/10.1016/j.ijpe.2021.108370
https://doi.org/10.1016/j.ijpe.2021.108370
https://doi.org/10.17559/TV-20140922094945
https://doi.org/10.1016/j.jclepro.2023.137177
https://roadtoreliability.com/types-of-maintenance/#h-condition-based-maintenance-cbm
https://roadtoreliability.com/types-of-maintenance/#h-condition-based-maintenance-cbm
https://doi.org/10.3390/en14185674
https://doi.org/10.1016/j.proeng.2015.01.341

