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A B S T R A C T A R T I C L E   I N F O 
Dynamic real-time workshop scheduling on job arrival is critical for effective 
production. This study proposed a dynamic shop scheduling method integrat-
ing deep reinforcement learning and convolutional neural network (CNN). In 
this method, the spatial pyramid pooling layer was added to the CNN to 
achieve effective dynamic scheduling. A five-channel, two-dimensional matrix 
that expressed the state characteristics of the production system was used to 
capture the state of the real-time production of the workshop. Adaptive 
scheduling was achieved by using a reward function that corresponds to the 
minimum total tardiness, and the common production dispatching rules were 
used as the action space. The experimental results revealed that the proposed 
algorithm achieved superior optimization capabilities with lower time cost 
than that of the genetic algorithm and could adaptively select appropriate 
dispatching rules based on the state features of the production system. 
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