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A B S T R A C T  A R T I C L E I N F O 
This research investigates the benefits of different Machine Learning (ML) 
approaches in production systems, with respect to the given use case of con-
sidering the forming process and different friction conditions on hydraulic 
press response in between the phases of the sheet metal bending cycle, i.e. 
bending, levelling and movement. A framework for enhancing production 
systems with ML facilitates the transition to smarter processes and enables 
fast, accurate predictions integrated into decision-making and adaptive con-
trol. Comparative ML analysis provides insights into predictive regression 
models for hydraulic press condition recognition, enhancing process im-
provement. Our results are supported by performance evaluation metrics of 
predictive accuracy RMSE, MAE, MSE and R2 for Linear Regression (LR), Deci-
sion Trees (DT), Support Vector Machine (SVM), Gaussian Process Regression 
(GPR) and Neural Network (NN) models. Given the remarkable predictive 
accuracy of the regression models with R2 values between 0.9483 and 0.9995, 
it is noteworthy that less complex models exhibit significantly shorter train-
ing times, up to 437 times shorter than more complex models. In addition, 
simpler models have up to 36 times better prediction rates, compared to 
more complex models. The fundamentals illustrate the trade-offs between 
model complexity, accuracy and computational training and prediction rate.  
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