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A B S T R A C T  A R T I C L E   I N F O 
Optimizing the multimodal transport route for vehicles is crucial for reducing 
costs, enhancing efficiency, and minimizing emissions in the vehicle logistics 
industry. This study addresses several operational challenges, including sea-
sonal fluctuations in vehicle sales, the scheduling of transportation modes, 
and client-specific order timing requirements. This paper presents a 0-1 inte-
ger programming model under carbon trading policy considering the timeta-
ble limit, with the objective of minimizing the aggregate costs of transporta-
tion, transshipment, short-term storage, time-window penalties, and carbon 
emissions. A linear weight reduction technique is employed to formulate the 
Improved Particle Swarm Optimization (IPSO) algorithm with dynamic inertia 
weights for model resolution. The model and algorithm's efficacy are validat-
ed by a real-world case study of multimodal transport in China. The results 
reveal that the IPSO algorithm reduced convergence times by 30.38 % and 
17.78 % in off-season and peak season data, respectively, compared to the 
traditional PSO algorithm. Additionally, the optimized multimodal transport 
solution reduced unit costs by 19.3 % and 14.8 %, respectively. The findings 
indicate that transport timeliness significantly influences optimal route selec-
tion. Factors such as extended short-term storage duration, missed shipping 
schedules, and expedited orders compel multimodal transport to shift toward 
road transport. An increase in carbon trading prices effectively encourages a 
shift from road transport to multimodal transport; however, excessively high 
carbon trading prices fail to regulate this transition. Furthermore, as 
transport distance increases, the transport costs and carbon emission ad-
vantages associated with multimodal transport also increase correspondingly. 
This research advances multimodal logistics by integrating seasonal varia-
tions and carbon trading into a novel optimization framework. 
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1. Introduction  
As per the figures published by the China Association of Automobile Manufacturers (CAAM) on 
January 11, 2024, China's automobile production and sales totaled 30.161 million and 30.094 
million units in 2023, maintaining the world's leading position for several straight years. All ve-
hicles manufactured and sold in China during the year were conveyed via vehicle logistics. Vehi-
cle logistics is a logistics that takes the vehicle as the goods, responds quickly and delivers on 
time according to the requirements of the delivery date and delivery place of the customer or-
der. Nevertheless, regulatory modifications in several policies have led to a substantial decline in 
the amount of road transport for vehicles. 
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In 2020, the Chinese government suggested a dual-carbon policy to foster high-quality and 
sustainable development [1, 2]. In 2011, the Chinese government implemented a carbon trading 
system, and in 2021, the national carbon emissions trading market was officially inaugurated to 
incentivize firms to diminish carbon emissions [3]. The transport sector contributes 16.5 % of 
worldwide carbon dioxide greenhouse gas emissions, primarily from road transport. Conse-
quently, conventional road transport methods are unable to satisfy varied customer expecta-
tions, and vehicle logistics confronts the significant task of evolving towards a high-quality de-
velopment phase. 

Multimodal transport integrates many transport modes, enhancing efficiency, lowering costs, 
and reducing carbon emissions [4-6]. China's multimodal vehicle transport has advanced swiftly 
over the past decade; however, numerous challenges persist, including congestion in the buffer 
zone during peak vehicle sales seasons, stringent limitations on the departure schedules of rail 
and maritime transport, and the nascent integration of the transport sector into the carbon trad-
ing framework. 

Multimodal transport elements mutually constrain one another and significantly influence the 
objectives of vehicle logistics businesses and clients regarding transit costs, duration, and carbon 
emissions. Nevertheless, the existing studies seldom consider the above factors comprehensively 
in the modeling process. Moreover, prior research has inadequately addressed the off-peak peri-
ods of vehicle sales and the limitations of transport mode schedules and has not been effectively 
aligned with carbon pricing plans. Consequently, it is highly significant to scientifically address the 
challenges of low-carbon multimodal transport of vehicles under scheduling restrictions and to 
offer effective transport solutions for the advancement of the vehicle logistics sector. 

This paper contributes to the state-of-the-art research in three ways: First, we assess the in-
fluence of vehicle sales off-season and peak season on the cached links at the nodes and subse-
quently examine the difference of the schedule period and the schedule of each line, considering 
the specialized nature of vehicle transport. The conclusion shows that both short-term storage 
and awaiting a shift connection diminish the overall cost benefits of multimodal transport to 
differing extents. Secondly, we examine the carbon emissions associated with each segment of 
vehicle multimodal transport and, in conjunction with China's carbon trading policy, demon-
strate that a moderate increase in carbon trading prices will effectively foster the advancement 
of low-carbon multimodal transport, while an excessively elevated carbon trading price will fail 
to function as a regulatory mechanism. Thirdly, we comprehensively evaluate all elements in the 
development of the vehicle multimodal transport model, examining real cases involving multiple 
dealers. We conclude that variations in transport distance among dealers also influence the se-
lection of transport options. As transport distance increases, the benefits in terms of transport 
cost and carbon emission cost derived from multimodal transport also increase, whereas the 
advantage concerning time window penalty cost diminishes. 

The remainder of the document is structured as follows. Section 2 presents a concise litera-
ture review. Section 3 constructs a model for comprehensive vehicle multimodal optimization. 
Section 4 designs an Improved Particle Swarm Optimization (IPSO) algorithm with dynamic in-
ertia weights. Section 5 conducts a case study to validate the model and methodology, along with 
a sensitivity analysis. Section 6 concludes the findings. 

2. Literature review 
Researchers have performed comprehensive studies on the optimization of multimodal 
transport routes [7, 8]. The optimal objectives of the developed model in this work can be pri-
marily categorized into two types: one is multi-objective optimization with the objective of min-
imizing transport cost and transport time. On that basis, several researchers additionally regard 
the expenses associated with container utilization and carbon emissions as optimization objec-
tives. The alternative is a single-objective optimization that accounts for many cost categories 
and seeks to minimize the overall cost, primarily focusing on transportation costs, time costs, 
and carbon emission costs [9-11]. Liu et al. examine the constraints of departure timing in rail-
way and river transportation concerning time expenditure [12]. In optimizing multimodal 
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routes for vehicle transport, most contemporary academics develop integer programming mod-
els with the minimization of total cost as the optimization target [13-15]. Nevertheless, only a 
limited number of scholars have examined the short-term storage of products at intermediate 
nodes and have not conducted further analysis on the phenomenon of cargo caching [16]. 

The punctuality of cargo transport is a critical determinant of logistics service quality, influ-
enced by order shipment timing, delivery time frame requirements, and the transport mode 
schedule. The time window is an efficient strategy in transportation planning to ensure timely 
deliveries and minimize transportation expenses. Certain studies have established rigid time 
window limits; nevertheless, in practical transportation scenarios, such constraints may render 
the problem challenging or insurmountable. Within a flexible time frame, commodities may be 
supplied over an extensive period, and late deliveries incur associated expenses [17, 18]. In 
comparison to temporal frameworks, a limited number of researchers have examined transpor-
tation transitions. 

The subject of carbon emissions has garnered the attention of numerous researchers due to 
global warming. Multimodal transport is not only more cost-effective than road freight transport 
but also more environmentally sustainable [19]. Wang et al. introduced a standardized method-
ology for calculating multimodal transport congestion, carbon emissions, and related issues [20, 
21]. Yin et al. investigated the synergistic impacts of railway freight subsidies and carbon trading 
mechanisms within low-carbon transport networks [22]. 

The existing multimodal transport literature has produced significant research outcomes in 
modeling and optimization methods. Nonetheless, the subsequent topics remain unaddressed in 
the current literature: This study examines multimodal transport from the viewpoint of vehicle 
shippers, focusing on the effects of seasonal fluctuations in vehicle sales on short-term storage 
logistics. Secondly, in view of the problems such as schedule limit, carbon pricing policy, order 
time requirement, the transport route is optimized through reasonable modeling. This paper 
focusses on the optimization of vehicle multimodal transport paths while considering timetable 
constraints within a low-carbon context, thereby contributing to the existing research in vehicle 
logistics and multimodal transport path optimization.  

3. Description and modeling 
3.1 Description of the problem 
In this study, a multimodal transport operator carries a batch of vehicles as cargo from the starting 
point 𝑂𝑂 to a number of various end points 𝐷𝐷 through the multimodal transport network 𝐺𝐺 =
{𝑁𝑁, 𝐿𝐿,𝑀𝑀}, where 𝑁𝑁 denotes the set of nodes of the multimodal transport network, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ∈ 𝑁𝑁 =
{1,2, … ,𝑛𝑛}, 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘; 𝐿𝐿 denotes the set of transport arcs between two nodes, 𝐿𝐿 =
� 𝑙𝑙𝑖𝑖,𝑗𝑗 ∣∣ ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁 �; 𝑀𝑀 denotes the set of modes of transport, 𝑚𝑚, 𝑛𝑛, ℎ ∈ 𝑀𝑀, 𝑚𝑚, 𝑛𝑛 = 1 or 2 or 3, ℎ =
2 or 3 (1 stands for road transport, 2 stands for rail transport, and 3 stands for waterway 
transport), 𝑚𝑚 ≠ 𝑛𝑛 and ℎ ≠ 𝑛𝑛.  

Merchandise may be transshipped at a node, and between two nodes, many transport routes 
are available, differing in distance, duration, cost, economies of scale discount factors, and carbon 
emissions. Each dealer possesses a designated shipment time and a comprehensive transit time 
requirement for the items. Following transshipment at the transit node, they must await the sub-
sequent shift to the next node and will face a window penalty cost if they arrive outside the per-
missible time window. Vehicle sales have relatively obvious off and peak seasons, limited by the 
processing capacity of the platform/port cache area, sales peak season cache area congestion will 
produce a longer short-term storage time. Consequently, it is essential to analyze the differing 
dealer demands and short-term storage times during the off and peak sales seasons in a detailed 
manner. Under the carbon trading policy, the multimodal transport operator possesses a specified 
quantity of carbon emission allowances. If the operator's carbon emissions exceed this allowance, 
it must purchase additional credits at the carbon trading unit price to compensate for the surplus 
emissions incurred during multimodal transport. Conversely, if emissions are below the allow-
ance, the operator may sell the surplus carbon emission credits. The objective function, comprising 
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transport cost, transshipment cost, short-term storage cost, time-window penalty cost, and carbon 
emission cost, is utilized to determine the transport scheme that minimizes the total expenditure 
for suppliers in delivering the vehicle to each dealer. Fig. 1 illustrates the multimodal shipping 
network for vehicles. 

 
Fig. 1 Multimodal transport process for vehicle logistics 

 

This paper presents the basic assumptions to facilitate modeling and enhance the operability 
of the model. 

 

• The nodes' locations and capacities are established, along with the distances and reacha-
bility among all nodes, 

• The total production of the vehicle and the dealers' demand are specified, 
• Shipments are indivisible, and each dealer's shipment cannot be divided during transport, 
• Only one mode of transport is permitted between two adjacent nodes, 
• Mode transitions occur solely at nodes and can happen at most once at any given node, 
• After transshipment at the transit node, the nearest shift is utilized to proceed to the sub-

sequent node, 
• Waiting during transit is prohibited, except when necessitated by shift restrictions. 

3.2 Model symbols and parameters 

The symbols in the vehicles multimodal route optimization model with timetable constraints in 
a low carbon context are described in Table 1. 

 
Table 1 Description of sets, parameters and decision variables 

Set 
𝑁𝑁 A collection of nodes in a multimodal transport network 
𝐿𝐿 A collection of arcs of a multimodal transport network 
𝑀𝑀 A collection of transport modes 
𝐷𝐷 A collection of dealers, 𝑑𝑑 denotes dealers that 𝑑𝑑 ∈ 𝐷𝐷, 𝐷𝐷 ∈ 𝑁𝑁 
𝑈𝑈 A collection of schedules, 𝑢𝑢 denotes the schedule, 𝑢𝑢 ∈ 𝑈𝑈 

Parameters 

𝑎𝑎𝑚𝑚 Discount factor for economies of scale in transport costs arising from the use of 𝑚𝑚 transport modes be-
tween transport nodes 

𝑄𝑄 Manufacturer's output(car) 
𝑄𝑄𝑖𝑖𝑖𝑖𝑚𝑚 Flow (car) between node 𝑖𝑖 and node 𝑗𝑗 choosing transport mode 𝑚𝑚  
𝑄𝑄𝑑𝑑 Dealer 𝑑𝑑's vehicle demand (car) 
𝑙𝑙𝑖𝑖𝑖𝑖𝑚𝑚 Nodal city 𝑖𝑖 transport distance (km) to nodal city 𝑗𝑗 by selecting transport mode 𝑚𝑚  
𝑡𝑡𝑜𝑜𝑜𝑜 The moment of shipment of the goods requested by the distributor 𝑑𝑑 
𝑡𝑡𝑖𝑖𝑖𝑖 Total time (h) taken for goods from distributor 𝑑𝑑 to reach node 𝑖𝑖  

𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 Distributor 𝑑𝑑 Nearest moment of departure of transport mode 𝑛𝑛 after conversion of transport mode 𝑚𝑚 to 
transport mode 𝑛𝑛 at node 𝑖𝑖 for goods in transit from node 𝑖𝑖 to node 𝑗𝑗 

𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 
Distributor 𝑑𝑑 The first departure moment of the mode of transport 𝑛𝑛 at 𝑢𝑢 after the conversion of the mode 
of transport 𝑚𝑚 into the mode of transport 𝑛𝑛 at the node 𝑖𝑖 for the shipment transiting from the node 𝑖𝑖 to the 
node 𝑗𝑗 
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𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 Distributor 𝑑𝑑 The moment after the conversion of the shipment from transport mode 𝑚𝑚 to transport mode 
𝑛𝑛 at node 𝑖𝑖 for shipments transiting from node 𝑖𝑖 to node 𝑗𝑗  

𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚 Node 𝑖𝑖 Selection of mode of transport 𝑚𝑚 Transport time (h/km) per unit distance to node 𝑗𝑗  
𝑡𝑡𝑖𝑖𝑚𝑚𝑚𝑚 Conversion time (h) for node 𝑖𝑖 to convert transport method from 𝑚𝑚 to 𝑛𝑛 
𝑡𝑡𝑖𝑖𝑆𝑆 Short-term storage time (h) at node 𝑖𝑖 
𝑡𝑡𝑖𝑖
𝑆𝑆𝑆𝑆 Duration of free storage period (h) at node 𝑖𝑖  

𝑇𝑇𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  Upper limit of the soft time window (h) for goods from distributor 𝑑𝑑 
𝑇𝑇𝑑𝑑 Total time (h) taken for goods from distributor 𝑑𝑑 to reach destination  
𝑐𝑐𝑖𝑖𝑖𝑖𝑚𝑚  Node 𝑖𝑖 Unit transport cost (CNY/car·km) for transport mode 𝑚𝑚 to node 𝑗𝑗 
𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚  Unit conversion cost (CNY/car) at node 𝑖𝑖 to convert mode of transport from 𝑚𝑚 to 𝑛𝑛 
𝑐𝑐𝑖𝑖𝑆𝑆  Unit short-term storage costs (CNY/car·h) at node 𝑖𝑖  
𝑐𝑐𝑡𝑡
𝑝𝑝  Penalty cost (CNY/car·h) per unit of time for delayed arrival of the vehicle at the end of the journey  
𝑊𝑊 Carbon market unit price (CNY/kg) 
𝑒𝑒𝑚𝑚 Mode of transport 𝑚𝑚 Carbon emissions (kg/car·km) per unit of transport during transport  
𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚 Carbon emissions (kg/car) per unit of transport changed from 𝑚𝑚 to 𝑛𝑛 at node 𝑖𝑖  
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚  Multimodal transport operator CO2 emission allowances (kg) 
𝐸𝐸𝑑𝑑 Carbon dioxide emissions (kg) from full transport of goods by distributor 𝑑𝑑 
𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 Maximum transport volume (car) from node 𝑖𝑖 to node 𝑗𝑗 using transport mode 𝑚𝑚 
𝑉𝑉𝑖𝑖  Capacity (car) of node 𝑖𝑖  

Decision variables 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚  The node 𝑖𝑖 carries the goods of the dealer 𝑑𝑑 to the node 𝑗𝑗 using the mode of transport 𝑚𝑚 taking the value of 
1 and 0 otherwise, 𝑖𝑖 ≠ 𝑗𝑗 

𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 The node 𝑖𝑖 converts the goods of the distributor 𝑑𝑑 using the mode of transport 𝑚𝑚 to the mode of transport 
𝑛𝑛 taking the value 1, otherwise 0, 𝑚𝑚 ≠ 𝑛𝑛 

3.3 Process and cost analysis 

The Vehicle Logistics link is set up with a dedicated railway/waterway cache area, which is more 
efficient, however, limited by the processing capacity of the cache area, the off and peak season 
of the vehicle sales has a significant impact on the outbound time of the cache area. Therefore, to 
ensure the rationality of the process as well as to avoid double-counting, this paper retains the 
articulation time of waiting shifts at the nodes and generates a short-term storage link only in 
the cache before outbound transshipment. As shown in Fig. 2, the multimodal transport process 
for Vehicle Logistics includes inter-node transport, short-term storage at nodes, transshipment 
at nodes, and waiting for the nearest shift, which generates the following five types of costs: 
transport costs, short-term storage costs, transshipment costs, time-window penalty costs, and 
carbon emission costs. 
 

 
Fig. 2 Multimodal transport process for vehicle logistics 

(1) Transport costs 𝐶𝐶1. The transport costs for each route segment can be calculated from data 
on cargo demand, unit shipping price, transport distances, and discount coefficients for 
transport costs for economies of scale, with the formulas specified below: 

𝐶𝐶1 = �  
𝑑𝑑∈𝐷𝐷

�  
m∈𝑀𝑀

�  
𝑖𝑖,𝑗𝑗∈𝑁𝑁

𝑄𝑄𝑑𝑑 ∙ 𝑐𝑐𝑖𝑖𝑖𝑖m ∙ 𝑙𝑙𝑖𝑖𝑖𝑖m ∙ 𝑎𝑎m ∙ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖m  (1) 

(2) Transshipment cost 𝐶𝐶2. The transhipment cost at each node can be calculated by the cargo 
demand, unit transhipment price, the formula is specified as follows: 
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𝐶𝐶2 = �  
𝑑𝑑∈𝐷𝐷

�  
𝑚𝑚,𝑛𝑛∈𝑀𝑀

�  
𝑖𝑖∈𝑁𝑁

𝑄𝑄𝑑𝑑 ∙ 𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚 ∙ 𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 (2) 

(3) Short-term storage cost 𝐶𝐶3. The short-term storage cost at each node is mainly affected by 
the demand for goods, unit short-term storage cost, short-term storage time, and free storage 
period, and the formula is specified as follows: 

𝐶𝐶3 = �  
𝑑𝑑∈𝐷𝐷

�  
ℎ,𝑛𝑛∈𝑀𝑀

�  
𝑖𝑖∈𝑁𝑁

𝑄𝑄𝑑𝑑 ∙ 𝑐𝑐𝑖𝑖𝑆𝑆 ∙ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑡𝑡𝑖𝑖𝑆𝑆 − 𝑡𝑡𝑖𝑖
𝑆𝑆𝑆𝑆 , 0� ∙ 𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑛𝑛 (3) 

(4) Time window penalty cost 𝐶𝐶4. The time window penalty cost is determined by the demand 
for goods, the unit time penalty cost, the total time spent on transport, and the dealer time win-
dow, which is expressed as follows: 

𝐶𝐶4 = �  
𝑑𝑑∈𝐷𝐷

𝑄𝑄𝑑𝑑 ∙ 𝑐𝑐𝑡𝑡
𝑝𝑝 ∙ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, 0) (4) 

𝑇𝑇𝑑𝑑 = �  
𝑚𝑚∈𝑀𝑀

�  
𝑖𝑖,𝑗𝑗∈𝑁𝑁

𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚 ∙ 𝑙𝑙𝑖𝑖𝑖𝑖𝑚𝑚 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 + �  
𝑛𝑛,ℎ∈𝐾𝐾

�  
𝑗𝑗∈𝑁𝑁

𝑡𝑡𝑗𝑗𝑆𝑆 ∙ 𝑦𝑦𝑗𝑗𝑗𝑗ℎ𝑛𝑛

+ �  
𝑚𝑚,𝑛𝑛∈𝑀𝑀

�  
𝑗𝑗∈𝑁𝑁

𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚 ∙ 𝑦𝑦𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 + �  
𝑚𝑚,𝑛𝑛,ℎ∈𝑀𝑀

�  
𝑖𝑖,𝑗𝑗,𝑘𝑘∈𝑁𝑁

�𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚�𝑦𝑦𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚
 (5) 

The formula for 𝑇𝑇𝑑𝑑 consists of the following four parts: transport time, short-term storage time, 
transit time, and waiting time due to schedule constraints. Because of the long rail/waterway 
schedule intervals and the fact that most of the lines are operating on a fixed number of days per 
week, the schedule is based on a one-week (168 h) cycle. Where 𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 is calculated from Eqs. 6 and 
7. 

𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧𝑡𝑡𝑜𝑜𝑜𝑜 + 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚 ∙ 𝑙𝑙𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑡𝑡𝑗𝑗𝑆𝑆 ∙ 𝑦𝑦𝑗𝑗𝑗𝑗ℎ𝑛𝑛 + 𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚;
𝑡𝑡𝑜𝑜𝑜𝑜 + 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚 ∙ 𝑙𝑙𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑡𝑡𝑗𝑗𝑆𝑆 ∙ 𝑦𝑦𝑗𝑗𝑗𝑗ℎ𝑛𝑛 + 𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚 ≤ 168, 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁,𝑚𝑚,𝑛𝑛,ℎ ∈ 𝑀𝑀

𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡𝑜𝑜𝑜𝑜 + 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚 ∙ 𝑙𝑙𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑡𝑡𝑗𝑗𝑆𝑆 ∙ 𝑦𝑦𝑗𝑗𝑗𝑗ℎ𝑛𝑛 + 𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚�, 168� ;

𝑡𝑡𝑜𝑜𝑜𝑜 + 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚 ∙ 𝑙𝑙𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑡𝑡𝑗𝑗𝑆𝑆 ∙ 𝑦𝑦𝑗𝑗𝑗𝑗ℎ𝑛𝑛 + 𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚 ≥ 168, 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁,𝑚𝑚,𝑛𝑛,ℎ ∈ 𝑀𝑀

 (6) 

𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 =

⎩
⎪⎪
⎨

⎪⎪
⎧𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗

𝑚𝑚𝑚𝑚1;𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ≤ 𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚1𝑜𝑜𝑜𝑜𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ≥ 𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚2;𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚1 ≤ 𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ≤ 𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚2

⋮
𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚;𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗

𝑚𝑚,𝑛𝑛,𝑢𝑢−1 ≤ 𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ≤ 𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

⋮
𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚;𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗

𝑚𝑚,𝑛𝑛,𝑈𝑈−1 ≤ 𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ≤ 𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

(5) Cost of carbon emissions 𝐶𝐶5. This paper calculates the cost of carbon emissions based on the 
carbon trading system, which can be calculated by carbon dioxide emissions, carbon trading 
market unit price, carbon dioxide emission quotas, the formula is specified as follows: 

𝐶𝐶5 = �  
𝑑𝑑∈𝐷𝐷

𝑊𝑊 ∙ 𝐸𝐸𝑑𝑑 −𝑊𝑊𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 (8) 

𝐸𝐸𝑑𝑑 = �  
𝑚𝑚,𝑛𝑛∈𝑀𝑀

�  
𝑖𝑖,𝑗𝑗∈𝑁𝑁

�𝑄𝑄𝑑𝑑 ∙ 𝑙𝑙𝑖𝑖𝑖𝑖𝑚𝑚 ∙ 𝑒𝑒m ∙ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑄𝑄𝑑𝑑 ∙ 𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚 ∙ 𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚� (9) 

3.4 Modeling 

The symbols in the vehicles multimodal transport path optimization model with timetable con-
straints in a low carbon context are described in Table 1. 

𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3 + 𝐶𝐶4 + 𝐶𝐶5 (10) 
0 ≤ 𝑎𝑎𝑚𝑚 ≤ 1 (11) 
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𝑄𝑄 ≥ �  
𝑑𝑑∈𝐷𝐷

𝑄𝑄𝑑𝑑 (12) 

𝑄𝑄𝑖𝑖𝑖𝑖𝑚𝑚 = �  
𝑑𝑑∈𝐷𝐷

𝑄𝑄𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 ≤ 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚,∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁,𝑚𝑚 ∈ 𝑀𝑀 (13) 

𝑄𝑄𝑖𝑖𝑖𝑖 = �  
𝑑𝑑∈𝐷𝐷

�  
𝑚𝑚∈𝑀𝑀

𝑄𝑄𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 ≤ 𝑉𝑉𝑖𝑖,∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁 (14) 

𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ≥ 0,∀𝑖𝑖、𝑗𝑗、𝑘𝑘 ∈ 𝑁𝑁;∀𝑚𝑚,𝑛𝑛 ∈ 𝑀𝑀;∀𝑑𝑑 ∈ 𝑁𝑁 (15) 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 ∈ {0,1} (16) 

�  
𝑚𝑚∈𝑀𝑀

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 = 1,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑖𝑖, 𝑗𝑗 were defined (17) 

�  
𝑚𝑚,𝑛𝑛∈𝑀𝑀

𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 1,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑖𝑖 was defined (18) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑛𝑛 ≥ 2𝑦𝑦𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚,∀𝑖𝑖, 𝑗𝑗,𝑘𝑘 ∈ 𝑁𝑁;∀𝑚𝑚,𝑛𝑛 ∈ 𝑀𝑀;∀𝑑𝑑 ∈ 𝑁𝑁 (19) 

Eq. 10 denotes the minimum total cost of multimodal transport of the vehicle, which is the 
objective function of the model, and it mainly includes transport, transshipment, short-term 
storage, time window penalty and carbon emission cost. Eq. 11 denotes the range of values of 
the discount factor of the economy of scale transport cost. Eq. 12 denotes that the output of the 
manufacturer is not less than the sum of the demand of all dealers. Eq. 13 denotes that the traffic 
passing through the nodes between node 𝑖𝑖 to node 𝑗𝑗 indicates that the flow between node 𝑖𝑖 and 
node 𝑗𝑗 does not exceed the maximum transport volume of the mode of transport between the 
nodes. Eq. 14 indicates that the total flow through any transport node does not exceed the capac-
ity of the transport node. Eq. 15 ensures that the cargo transit operation can be completed be-
fore the departure of the shift. Eq. 16 indicates the value of the decision-making variables. Eq. 17 
indicates that the mode of transport cannot be changed halfway in the process of transport from 
node 𝑖𝑖 to node 𝑗𝑗. Eq. 18 indicates that node 𝑖𝑖 can switch the mode of transport, but only once. Eq. 
19 denotes the uninterrupted transport equation for the vehicle. 

4. Design of solving algorithm 
4.1 Particle swarm optimization algorithm 

The multimodal transport route optimization model established in this paper involves multiple 
intermediate variables, classifying it as a typical NP-Hard problem. Heuristic algorithms have 
excellent performance in combinatorial optimization and are widely applied to such optimiza-
tion problems. Particle Swarm Optimization (PSO), an intelligent population-based stochastic 
optimization algorithm, is recognized as one of the most effective methods for addressing opti-
mization problems developed in recent decades [23]. The particle swarm algorithm models 
flocking behavior by representing particles as massless entities, each assigned initial positions 
and velocities within the solution space. It iteratively utilizes a fitness function to identify an 
optimal solution. 

The particle code is denoted by 𝑎𝑎𝑖𝑖𝑛𝑛, e.g., 𝑎𝑎𝑖𝑖2 = 3 indicates that the transport path of the second 
dealer is the third in the sequence of all the reachable paths from the manufacturer to the dealer. 
The transport modes are denoted by 1, 2 and 3, which correspond to road transport, railway 
transport and waterway transport, respectively, as shown in Fig. 3. For the global optimal solu-
tion and the corresponding particle 𝑖𝑖 in the particle swarm after 𝑡𝑡 iterations, the optimal path 
corresponding to each dealer in the particle swarm is back-projected through particle 𝑖𝑖, and the 
transport nodes of the optimal path as well as the transport modes are combined to obtain the 
transport scheme of each dealer. 
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Fig. 3 Encoding and decoding 

4.2 Dynamic inertia weights design 

PSO exhibits rapid convergence and requires fewer parameters; however, it is prone to issues 
such as a tendency to converge to local optima, a reduction in convergence speed during later 
stages, and the risk of premature convergence. The inertia weight size reflects the extent to 
which the particle's current speed is retained. It is evident that the particle speed significantly 
influences the algorithm's global convergence, as demonstrated by Eq. 23. However, the inade-
quate control of particle speed results in the basic particle swarm algorithm lacking robust local 
search capabilities. 

To enhance the balance between global and local search performance in PSO and to minimize 
the number of iterations, researchers have incorporated linearly decreasing inertia weights into 
the algorithm model. This modification enables particles to exhibit varying exploration capabili-
ties throughout the evolutionary process [24]. Therefore, this paper adopts the linear decreasing 
weight strategy (LDW) to update the inertia weight factor 𝑤𝑤, so that it can be dynamically ad-
justed with the search process: at the beginning of the algorithm, a larger positive value can be 
given to 𝑤𝑤, so that each particle can quickly detect a better region within the global range, and as 
the search proceeds, 𝑤𝑤 can be made to decrease gradually in a linear fashion, so that the algo-
rithm can have a larger probability of converging to the position of the globally optimal solution. 
The expression is as follows: 

𝑤𝑤 = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 −
(𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚) ⋅ 𝑡𝑡

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
 (20) 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 denotes the maximum number of iterations, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 denotes the minimum inertia weight, 
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 denotes the maximum inertia weight, 𝑡𝑡 denotes the current number of iterations. 

4.3 Dynamic inertia weighted particle swarm optimization algorithm flow 

Based on the above description, the IPSO flow designed in this study is shown in Fig. 4, where 
the algorithm solves under each inertia weight until it reaches the maximum number of itera-
tions, and finally outputs the optimal solution.  

 
Fig. 4 IPSO flow chart 
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The specific steps of the algorithm are as follows. Step 1: Initialize the particle swarm as well 
as the parameters. Step 2: Record the fitness value of each particle 𝑓𝑓[𝑥𝑥𝑖𝑖] by optimization under 
constraints using 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in Eq. 10 as a cost function for IPSO. Step 3: For each particle, update 
𝑓𝑓[𝑝𝑝𝑖𝑖] and 𝑓𝑓[𝑔𝑔] with its fitness value by comparing it with the individual extreme value 𝑓𝑓[𝑝𝑝𝑖𝑖] and 
global extreme value 𝑓𝑓[𝑔𝑔]. Step 4: Update the inertia weights 𝑤𝑤 by Eq. 20. Step 5: Update the 
position 𝑥𝑥𝑖𝑖 and velocity 𝑣𝑣𝑖𝑖 of the particles. Step 6: Perform boundary condition processing to 
judge whether 𝑥𝑥𝑖𝑖 and 𝑣𝑣𝑖𝑖 are out of the specified range. Step 7: Judge whether the termination 
condition of the algorithm is satisfied, if not, return to step 2; if yes, end the algorithm and out-
put the optimal solution. 

5. Empirical case studies 
5.1 Case descriptions 

FAW Logistics Co. is a company mainly engaged in comprehensive vehicle logistics services, has 
established many logistics bases in China and formed a logistics network covering the whole 
country. The carrier needs to transport a batch of goods from Changchun to each dealer, and the 
short-distance transport from the distribution center to each dealer uses road transport. As 
shown in Fig. 5, Considering the geographical and economic distribution, this paper focuses on 
multimodal transport networks in the East China region of the Chinese mainland, selecting the 
top four prefecture-level city distributors with the highest demand in each province for analysis. 
Changchun, the node where the main plant is located, is chosen as the departure point, num-
bered O. The nodes where the seven distribution centers are located are numbered N1 to N7 ; the 
21 dealers involved are divided into two categories, the first category of dealers is located in the 
distribution center node, with a total of 6 dealers, numbered N2(d1) to N7(d6); the second catego-
ry of dealers is located in the nodes other than the manufacturer and the distribution centers, 
with a total of 15 dealers, numbered d7 to d21. Referring to the vehicle sales data on the official 
website of CAAM, the ratio of dealers' demand in peak seasons is set as 0.296 as the average val-
ue in the past three years. 

The actual distances of different modes of transport between nodes were obtained according 
to Gaode Map, China Railway Information Network and Waterway Network, as shown in Table 2. 

Based on the enterprise's actual data and the number of associated facilities and equipment, 
determine the maximum annual flow of various transport modes between the nodes, as illus-
trated in Table 3. The annual output of Node O is 1.1 million vehicles, representing the maximum 
annual capacity for the vehicle at each node, as detailed in Table 4. 
 

 
Fig. 5 Multimodal transport network for vehicles in East China 
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Table 2 Distance data for different modes of transport between nodes 

Node-to-Node 
Transport distance (km) 

Node-to-Node 
Transport distance (km) 

Highway Railway Waterway Highway Railway Waterway 
O→N1 679 700 - N3→d12 234 - - 
O→N2 1245 1346 - N3→d14 101 - - 
O→N3 1894 2138 - N4→N4(d3) 0 - - 
O→N6 2031 2466 - N4→d15 100 - - 
O→N7 2687 3040 - N4→d16 127 - - 
N1→N4 - - 1022 N4→d17 98 - - 
N1→N5 - - 1087 N5→N5(d4) 0 - - 

N2→N2(d1) 0 - - N6→N6(d5) 0 - - 
N2→d7 236 - - N6→N5 156 - - 
N2→d8 352 - - N6→d17 84 - - 
N2→d9 208 - - N6→d18 166 - - 
N2→d13 320 - - N7→N7(d6) 0 - - 

N3→N3(d2) 0 - - N7→d19 254 - - 
N3→d10 150 - - N7→d20 178 - - 
N3→d11 352 - - N7→d21 187 - - 

 
Table 3 Flow constraint for different modes of transport between nodes 

Node-to-Node Flow Constraint (car) Node-to-Node Flow Constraint (car) 
Highway Railway Waterway Highway Railway Waterway 

O→N1 75,000 75,000 - N3→d12 4000 - - 
O→N2 75,000 75,000 - N3→d14 14,000 - - 
O→N3 65,000 65,000 - N4→N4(d3) 35,000 - - 
O→N6 35,000 35,000 - N4→d15 12000 - - 
O→N7 20000 20000 - N4→d16 7000 - - 
N1→N4 - - 60,000 N4→d17 7000 - - 
N1→N5 - - 20000 N5→N5(d4) 25,000 - - 

N2→N2(d1) 25,000 - - N6→N6(d5) 25,000 - - 
N2→d7 10000 - - N6→N5 25,000 - - 
N2→d8 10000 - - N6→d17 7000 - - 
N2→d9 7000 - - N6→d18 7000 - - 
N2→d13 20000 - - N7→N7(d6) 7000 - - 

N3→N3(d2) 35,000 - - N7→d19 10000 - - 
N3→d10 13,000 - - N7→d20 4000 - - 
N3→d11 4000 - - N7→d21 4000 - - 

 
Table 4 Capacity constraint at each node 

Node Capacity Constraint 
(car) Node Capacity Constraint 

(car) Node Capacity Constraint 
(car) 

O 1,000,000. N4(d3) 302688 d13 20000 
N1 700000 N5(d4) 384196 d14 15000 
N2 394164 N6(d5) 107244 d15 15000 
N3 74124 N7(d6) 178452 d16 10000 
N4 302688 d7 10000 d17 10000 
N5 384196 d8 10000 d18 10000 
N6 107244 d9 10000 d19 10000 
N7 178452 d10 15000 d20 10000 

N2(d1) 394164 d11 10000 d21 10000 
N3(d2) 74124 d12 10000   
 
The first three quarters of vehicle sales are off-season, and the fourth quarter is peak season. 

The demand of each dealer in the off-peak sales season is shown in Table 5. The average demand 
ratio of dealers during peak seasons in the past three years is set at 0.296. Therefore, in the spe-
cific case study, Tables 3 and 4 are correspondingly split according to this sales ratio. The data 
comes from the actual operation of the enterprise and the official website of CAAM.  
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Table 5 Dealer sales off and peak demand 

Node 
Quantity demanded (car) 

Node 
Quantity demanded (car) 

Off-season Peak season Off-season Peak season 
N2(d1) 15779 6633 d12 1323 556 
N3(d2) 7891 3318 d13 12346 5191 
N4(d3) 23896 10047 d14 7179 3018 
N5(d4) 19170 5831 d15 6708 2819 
N6(d5) 15841 6661 d16 3675 1545 
N7(d6) 3466 1457 d17 2546 1071 

d7 5326 2239 d18 2905 1222 
d8 4456 1873 d19 4064 1709 
d9 3663 1540 d20 1531 644 
d10 7062 2962 d21 653 275 
d11 1533 645    

 
The unit transport costs, transport time per unit distance, carbon emissions per unit of 

transport, and the discount factor for economy of scale transport costs for different modes of 
transport are shown in Table 6. The data were obtained from the current transport costs of en-
terprises, the China Transport Yearbook, the IPCC Guidelines for National Greenhouse Gas In-
ventories, and studies in the literature at [25]. 
 

Table 6 Summary of data relating to transport by different modes of transport 
Mode of Transportation Highway Railway Waterway 

Unit freight (¥/car·km) 2.0 (distance ≤ 500km) 
1.8 (distance > 500km) 

1.6 (distance ≤ 500km) 
1.4 (distance > 500km) 

1.2 (distance ≤ 500km) 
1.0 (distance > 500km) 

Unit transit time (h/km) 1/90 1/70 1/34 
Carbon emissions (kg/car·km) 0.364 0.035 0.101 

Cost discount factor 0.8 0.6 0.4 

The unit transfer cost, transfer time and unit transfer carbon emission of transfer between 
different modes of transport are shown in Table 7. The data were obtained from the actual oper-
ation data of enterprises and the research in literature [24, 25]. 

 
Table 7 Summary of data related to transhipment by different modes of transport 

Mode of Transshipment Highway-Railway Highway-Waterway Railway-Waterway 
Unit freight (¥/car) 80 180 240 

Transit time (h) 9 12 24 
Carbon emissions (kg/car) 2.27 3.31 2.86 

The railway/waterway schedules for vehicle logistics are shown in Table 8. Road transport 
departure time is implemented according to the whole point. The data comes from China Rail-
way Special Cargo Logistics Co., Ltd (CRSCL), the actual operation data of the enterprise. In order 
to facilitate the model calculation, set the moment of shipment required by each distributor as 
156:00 (12:00 on Friday). 

The timeliness requirements for each distributor are shown in Table 9, with data derived 
from the company's current timeliness standards. 
 

Table 8 Railway and waterway schedules between nodes 
Node-to-Node Railway Waterway 

O→N1 12:00, 36:00, 60:00, 84:00, 108:00, 132:00 - 
O→N2 36:00, 108:00 - 
O→N3 60:00, 132:00 - 
O→N6 36:00, 84:00, 132:00 - 
O→N7 36:00, 108:00 - 
N1→N4 - 36:00, 108:00, 156:00 
N1→N5 - 36:00, 108:00, 156:00 
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Table 9 Distributor time windows by distributor 

Node Upper Limit of Soft 
Time Window (h) Node Upper Limit of Soft 

Time Window (h) 
N2(d1) 115.5 d12 165.5 
N3(d2) 153 d13 131 
N4(d3) 181 d14 160 
N5(d4) 186 d15 186 
N6(d5) 170.5 d16 187.5 
N7(d6) 183 d17 186 

d7 126 d18 179.5 
d8 132 d19 195.5 
d9 124.5 d20 192.5 
d10 160.5 d21 192.5 
d11 170.5   

 
The rest of the data are as follows: short-term storage cost per unit is CNY 0.42/car·h; penalty 

cost per unit of time for delayed arrival is CNY 10/car·h; carbon trading price is CNY 0.07/kg; 
short-term storage time at nodes in the low season is 48 h; short-term storage time at nodes in 
the peak season is 144 h; exemption period at nodes is 24 h; carbon dioxide emission allowance 
in the low season is 211,200 kg; carbon dioxide emission allowance in the high season is 88,800 
kg. The data refer to the actual operation data of the company, the price of China's carbon trad-
ing market and the research of the paper [26]. 

5.2 Analysis of results 

The model is based on the data of vehicle multimodal transport in off-peak sales seasons, and 
the algorithm is based on running under MATLAB R2022a (64-bit). The particle swarm size 𝑁𝑁𝑁𝑁 
is set to 180, the number of iterations 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is 180, the learning factor 𝑐𝑐1 is 1.7, the learning fac-
tor 𝑐𝑐2 is 1.7, the maximum inertia weight 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 is 3.5, and the minimum inertia weight 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 is 
0.5. As shown in Fig. 6, using the IPSO algorithm, the data of off-season of sales reaches the con-
vergence around iteration 55, and the data of peak season of sales reaches the convergence 
around iteration 74. Meanwhile, when using the IPSO algorithm, both sets of examples converge 
to the optimal scheme within 75 iterations. According to the setting of Eq. 20, taking the number 
of intermediate iterations of 75 as 37, the fixed weight w is obtained to be approximately 2.9. 
Therefore, referring to the above experimental background, with all other parameter Settings 
remaining unchanged, the inertia weight is set to a fixed value of 2.9 to verify the ability of the 
PSO algorithm. As shown in Fig. 6, using the PSO algorithm, the data of off-season of sales reach-
es the convergence around iteration 79, and the data of peak season of sales reaches the conver-
gence around iteration 90.  

  
Fig. 6 Convergence of the objective function for sales off-peak seasons 

Through comparison, both the IPSO algorithm and the PSO algorithm can converge to the op-
timal objective function within 100 iterations, proving that this algorithm can effectively solve 
the route optimization problem of whole vehicle multimodal transport. Meanwhile, compared 
with the PSO algorithm with a fixed inertia weight, the IPSO algorithm using a dynamic inertia 
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weight has reduced the number of convergences of the sales off-season examples by 30.38 % 
and those of the sales peak season examples by 17.78 %. 

The optimal transport scheme for each dealer in the off-season is shown in Table 10, and the 
cost is accurate to a single digit. The total transport cost under the carbon trading policy is 
¥2,858,013,466, and the unit transport cost of the vehicle is ¥1,893/car. The unit transportation 
cost of the reference enterprise during the off-season for vehicle sales is approximately 
¥2,347/car. This plan reduces the total cost by 19.3 %. All the dealers' transport schemes use 
multimodal transport, with five dealers using road-rail-water multimodal transport and the rest 
using road-rail multimodal transport. More than half of the total number of dealers incurred 
time window penalty costs. 
 

Table 10 Off-season vehicles transport scheme 
Node Transportation Path C1 (¥) C2 (¥) C3 

 
C4 
 

C5 
 N2(d1) O-(2)-N2-(1)-N2(d1) 17840

 
12623

 
1590

 
1499

 
5454
 N3(d2) O-(2)-N3-(1)-N3(d2) 14171

 
63128

 
7954
 

5523
 

4258
 N4(d3) O-(2)-N1-(3)-N4-(1)-N4(d3) 23819

 
10036

 
4817

 
7168

 
2239

 N5(d4) O-(2)-N1-(3)-N5 -(1)-N5(d4) 19607
 

80514
 

3864
 

4984
 

1884
 N6(d5) O-(2)-N6-(1)-N6 (d5) 32813

 
12672

 
1596

 
0 9822

 N7(d6) O-(2)-N7-(1)-N7 (d6) 88507
 

27728
 

3493
 

0 2636
 d7 O-(2)-N2-(1)-d7 80328

 
42608

 
5368
 

8640
 

5043
 d8 O-(2)-N2-(1)-d8 75477

 
35648

 
4491
 

0 5536
 d9 O-(2)-N2-(1)-d9 53605

 
29304

 
3692
 

1029
 

3207
 d10 O-(2)-N3-(1)-d10 14377

 
56496

 
7118
 

8239
 

6510
 d11 O-(2)-N3-(1)-d11 36165

 
12264

 
1545
 

0 2202
 d12 O-(2)-N3-(1)-d12 28713

 
10584

 
1333
 

0 1502
 d13 O-(2)-N2-(1)-d13 20280

 
98768

 
1244

 
0 1433

 d14 O-(2)-N3-(1)-d14 14053
 

57432
 

7236
 

8056
 

5722
 d15 O-(2)-N1-(3)-N4-(1)-d15 77598

 
28173

 
1352

 
1751

 
7996
 d16 O-(2)-N1-(3)-N4-(1)-d16 44100

 
15435

 
7408
 

9154
 

4633
 d17 O-(2)-N1-(3)-N4-(1)-d17 29370

 
10693

 
5132
 

6642
 

3022
 d18 O-(2)-N6 -(1)-d18 67891

 
23240

 
2928
 

0 3030
 d19 O-(2)-N7 -(1)-d19 12029

 
32512

 
4096
 

0 5721
 d20 O-(2)-N7 -(1)-d20 43455

 
12248

 
1543
 

0 1859
 d21 O-(2)-N7 -(1)-d21 18628

 
52240 6582 0 8079 

 
The optimal transport scheme for each dealer during the peak sales season is shown in Table 

11, with costs to the nearest digit. The total transport cost under the carbon trading policy is 
¥156,108,521, and the unit transport cost of the vehicle is ¥2,548/car. The unit transportation 
cost of complete vehicles during the peak season for reference enterprises is approximately 
¥2,990/car. This plan reduces the total cost by 14.8 %. 10 dealers exist that use full road 
transport, which is close to half of the total, and incur only transport and carbon emission costs. 
Of the dealers that choose multimodal transport, five use road-water transport and the rest use 
road-rail transport, all incurring time-window penalty costs. 

During the peak sales season, the unit transport cost of the vehicle rose by 34.6 % compared to 
the off-season. The proportion of transport costs across various quarters surpasses 80 %, while 
there is a large variation in the transport scenarios and the proportion of remaining categories of 
costs. Refer to Fig. 7. Under schedule constraints, extended short-term storage durations at nodes 
during peak sales periods will markedly elevate both the time window penalty cost and the short-
term storage cost, thereby diminishing the transport cost benefits associated with multimodal 
transport options. To minimize short-term storage links, the dealers who choose road-rail-water 
multimodal transport in the off-season switch to road-water multimodal transport in the peak 
season. Additionally, over half of the dealers utilizing road-rail multimodal transport switch to full 
road transport. After ignoring schedule restrictions, all dealers employ multimodal transport solu-
tions throughout both off-season and peak seasons. In the off-season, road-rail-water multimodal 
transport is utilized, which shifts to road-water multimodal transport during the peak sales sea-
son. Additionally, orders placed by all dealers in the off-season do not incur time-window penalty 
costs, while such costs are elevated in the peak sales season.  
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Consequently, variations in peak and off sales seasons, along with schedule constraints, will 
influence transport options. Longer short-term storage times will force multimodal transport to 
shift to road transport to reduce the impact of short-term storage links. Simultaneously, sched-
ule constraints exacerbate overall transit time, compelling multimodal transport to transition to 
road transport to mitigate the effects of waiting for the nearest schedule. 

 
Table 11 Peak season vehicles transport scheme 

Node Transportation Path C1 (¥) C2 (¥) C3 
 

C4 
 

C5 
 N2(d)1 O-(1)-N2-(1)-N2(d1) 11891642 0 0 0 210
 N3(d)2 O-(1)-N3-(1)-N3(d2) 9049380 0 0 0 160
 N4(d)3 O-(1)-N1-(3)-N4-(1)-N4(d3) 13930768 3616

 
506

 
542

 
251

 N5(d)4 O-(1)-N1-(3)-N5-(1)-N5(d4) 8236637 2099
 

293
 

291
 

148
 N6(d)5 O-(2)-N6-(1)-N6(d5) 13797862 5328

 
335

 
442

 
413
 N7(d)6 O-(2)-N7-(1)-N7(d6) 3720595 1165

 
734
 

903
 

110
 d7 O-(1)-N2-(1)-d7 4859526 0 0 0 844
 d8 O-(1)-N2-(1)-d8 4412788 0 0 0 762
 d9 O-(1)-N2-(1)-d9 3273424 0 0 0 570
 d10 O-(1)-N3-(1)-d10 8789320 0 0 0 154
 d11 O-(1)-N3-(1)-d11 2122411 0 0 0 369

 d12 O-(1)-N3-(1)-d12 1724579 0 0 0 301
 d13 O-(1)-N2-(1)-d13 11964217 0 0 0 206
 d14 O-(1)-N3-(1)-d14 8718881 0 0 0 153
 d15 O-(1)-N1-(3)-N4-(1)-d15 4359753 1014

 
142

 
141

 
776
 d16 O-(1)-N1-(3)-N4-(1)-d16 2456179 5562

 
778
 

755
 

436
 d17 O-(1)-N1-(3)-N4-(1)-d17 1652939 3855

 
539
 

536
 

294
 d18 O-(2)-N6-(1)-d18 2855863 9776

 
615
 

725
 

127
 d19 O-(2)-N7-(1)-d19 5058640 1367

 
861
 

894
 

240
 d20 O-(2)-N7-(1)-d20 1827930 5152

 
324
 

350
 

782
 d21 O-(2)-N7-(1)-d21 784520 2200

 
138
 

150
 

340
  

 
Fig. 7 Proportion of various costs in different scenarios 

5.3 Sensitivity analysis 

The generation of dealer demand orders is not fixed, and to explore the impact of different order 
shipping moments on the shipping scheme, orders are set to be shipped at 12 h intervals during 
the week. Fig. 8 illustrates the total cost and time cost associated with various shipping mo-
ments. There are two scenarios for different shipping moments: waiting for the nearest schedule 
and missing the nearest schedule, which will lead to a difference of the whole transport time, 
thus affecting the penalty cost of the time window as well as the total cost, and ultimately affect-
ing the optimal route choice. Table 12 shows that under different shipping moments, the dealer's 
transportation path will also be affected. 
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Therefore, different shipping moments will affect the dealer transport scheme, and planning 
a reasonable shipping moment can effectively control the total cost, while proving that the fluc-
tuation of the time window penalty cost will affect the optimal path selection. 
 

 
Fig. 8 Distributor total cost and proportion of time cost under different shipping moments 

 
Table 12 Transportation schemes of some dealers under different shipping moments 

Season Time of dispatch Transportation Path 
Off-season 0:00; 12:00 … 

24:00; 72:00 … 
O-(2)-N₁-(3)-N₄-(1)-N₄(d₃) 
O-(1)-N₁-(3)-N₄-(1)-N₄(d₃) 

Sales season 0:00; 12:00 … 
24:00; 36:00 … 

O-(1)-N₁-(3)-N₄-(1)-d₁₇ 
O-(2)-N₆-(1)-d₁₇ 

Sales season 12:00; 24:00 … 
0:00; 72:00 … 

O-(2)-N₃-(1)-N₃(d₂) 
O-(1)-N₃-(1)-N₃(d₂) 

 
In the actual operation of enterprises, sometimes the time requirements of dealer orders will 

be increased, and the time window limit will be stricter. To explore the impact of different time 
window ceilings on the transport program, selected the base data of 156:00 shipments in the off 
sales season, adhering to Upper limit of the time window under standard limitation require-
ments, executed by reducing progressively the time window by 10 percent incrementally. Fig. 9 
illustrates the findings. As the degree of order expediting rises, total costs exhibit an upward 
trend; the proportion of selecting the road transport scheme demonstrates a stepwise increase; 
the proportion of time window penalty costs displays a fluctuating rise. As the level of order 
expediting rises, road-rail-water multimodal transport evolves into road-water multimodal 
transport or complete road transport, resulting in a progressive transformation of transport 
programs from near to far dealers. As shown in Table 13, new dealers’ marks added from the 
initial stage are in red. In the first shift to road transport only, dealers such as d1, d7, and d8 are 
closer to the supplier, and as the distance of the transport route grows, dealers such as d2 and 
d5, which are farther away from the supplier, gradually shift to road transport only. 

Therefore, different dealer time window ceilings will affect the dealer transport scheme 
choice, and as order expediting will force multimodal transport to shift to road transport to 
avoid excessive time window penalty costs, further proving that fluctuations in time window 
penalty costs will affect the optimal route choice. The distance between the dealer and the man-
ufacturer will influence the selection of the transport scheme. With an increase in transport dis-
tance, multimodal transport offers a greater advantage in terms of transport cost. 

In this paper, the carbon trading price is set at CNY 70/t according to the average price in 
China's carbon trading market. Currently, the average carbon pricing in different regions of the 
world is much higher than the Chinese carbon trading price [27]. To explore the impact of differ-
ent carbon trading on the transport scheme within a reasonable range, the base data of 156:00 
shipment in the peak selling season is selected, the carbon trading price was steadily raised by 
0.1 yuan/kg from an initial value of 0 yuan/kg for research. As shown in Fig. 10. With the in-
crease of carbon trading price, the total cost shows an incremental trend; the proportion of 
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choosing multimodal transport solutions shows a step-up trend; carbon emissions show a step-
down trend, which is negatively related to the proportion of choosing multimodal transport so-
lutions. With the increase of carbon trading price, the dealers who choose road transport only 
will gradually change to multimodal transport, and the programs of the transport distance from 
far to near dealers successively change. When the carbon trading price reaches CNY 1.30/kg, the 
carbon trading price can no longer play a regulatory role. As shown in Table 14, the new dealers 
added in the more initial stage are marked in red. 

 

 
Fig. 9 Dealer related data in the upper limit of different time windows 

 
Table 13 Road transport dealers only in the upper limit of different time windows 

Upper limit of time window (%) Proportion of road transport only (%) Road transport dealers only 
100–60 0 - 
50 20.83 d₁, d₇, d₈, d₉, d₁₃ 
40 47.61 d₂, d₁₀, d₁₁, d₁₂, d₁₄ 
30–0 57.14 d₅, d₁₈ 

 
The results show that different carbon trading prices will affect the choice of transport op-

tions for dealers, and that an increase in carbon trading prices will effectively promote the trans-
formation of road transport into multimodal transport, which will make the transport options 
greener and lower-carbon, but at the same time it will cause an increase in the total cost and 
increase the cost burden on the carriers. Consequently, it is further shown that transport dis-
tance influences the selection of transport options. Multimodal transport offers reduced carbon 
emissions, and its selection by dealers for extended transport distances can enhance this benefit, 
leading to decreased carbon costs and overall expenses 

 

 
Fig. 10 Transport by distributors with different carbon trading costs 
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Table 14 Multimodal transport-only distributors with different carbon trading prices 
Carbon trading cost 

(¥/kg) 
Proportion of multimodal transport only 

(%) 
Multimodal transport dealers only 

0.0–0.1 52.38 d₃, d₄, d₅, d₆, d₁₅, d₁₆, d₁₇, d₁₈, d₁₉, d₂₀, d₂₁ 
0.2 57.14 d₁₁ 
0.3 71.43 d₁₀, d₁₂, d₁₄ 

0.4-0.9 76.19 d₂ 
1.0-1.1 85.71 d₈, d₁₃ 

1.2 95.24 d₇, d₉ 
1.3-1.4 100.00 d₁ 

6. Conclusion 
This paper examines the optimization of multimodal transport paths for vehicles, considering 
schedule constraints within the framework of carbon trading policy. This study examines the 
impact of various factors, including sales off-peak season cache processing capacity, order tim-
ing demand, shift waiting, and carbon emissions, on transport schemes. We develop a multimod-
al transport path optimization model for vehicles, incorporating schedule constraints within the 
framework of carbon trading policy. The model seeks to minimize total transportation costs 
while adhering to constraints related to timetable periods, time windows, route flows, and node 
capacities. A particle swarm algorithm incorporating a dynamic inertia weight and a linear 
weight reduction strategy is proposed. The effectiveness of the model and algorithm is demon-
strated through a real-world case study of vehicle multimodal transport in China. The results 
indicate that transport timeliness significantly influences optimal path selection. Extended 
short-term storage duration, increased shift waiting time for shipping, expedited orders, and 
other factors compel multimodal transport to transition to road transport to mitigate excessive 
time window penalty costs. Increasing the carbon trading price will effectively encourage a tran-
sition from road transport to multimodal transport, thereby enhancing the low-carbon nature of 
the transport scheme. However, too high a carbon trading price will not be able to play a regula-
tory role, and at the same time will cause the total cost to increase, necessitating a careful and 
reasonable price setting. Additionally, the transport distance influences the selection of 
transport schemes. When the order time requirement is shortened, dealers tend to prefer road 
transport for shorter distances. Conversely, when carbon emission costs are elevated, dealers 
are more likely to opt for multimodal transport over longer distances.  

In the future, our further research will focus on the capacity scheduling of time-varying mul-
timodal transport networks and the hybrid transport mode involving multiple automakers to 
improve the potential of the model in solving complex scenarios in the real world and try to uti-
lize the analysis from a multi-objective optimization perspective.  
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