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A B S T R A C T  A R T I C L E   I N F O 
With the intensification of China’s aging society, improving the health mana-
gement and emergency response capabilities of the elderly at home has 
become an urgent issue that needs to be addressed. To meet this challenge, an 
Emergency Home Monitoring System (EHMS) that utilizes real-time data and 
wearable device monitoring is developed to optimize the Emergency Medical 
Transport Vehicle and Hospital Scheduling Problem (EMTVHSP) for elderly 
people at home. The patient's condition classification and waiting time are ef-
fectively combined to establish an Emergency Medical Transport Vehicle and 
Hospital Scheduling Model (EMTVHSM). Specifically, the optimization objec-
tive of the model is to minimize the maximum rescue time, thereby improving 
the allocation efficiency of medical resources and the efficiency of patient 
transfer. To solve this model, an Improved Quantum-behaved Particle Swarm 
Optimization (IQPSO) is proposed. The algorithm significantly improves the 
ability to solve complex scheduling problems by introducing neighborhood 
structure, improving constraint processing, introducing mutation operations 
and designing innovative resource reallocation strategies. Simulation results 
show that the dynamic resource scheduling method based on the IQPSO has 
significant advantages over traditional algorithms in reducing the maximum 
patient transfer time and improving scheduling efficiency and the optimization 
effect is improved by an average of 6.1 %. The emergency home monitoring 
system, scheduling model, and optimization algorithm designed effectively 
provide a more efficient emergency medical resource scheduling solution for 
elderly people at home and offer strong technical support and a practical basis 
for addressing health management challenges in an aging society. 
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1. Introduction 
In China, the issue of population aging is becoming increasingly prominent, with the proportion 
of people aged 65 and above continuing to rise, driving an urgent need for an emergency home 
health management system [1]. To address this challenge, we propose an Emergency Home Mon-
itoring System (EHMS). This system aims to monitor the health status of elderly individuals in 
real-time and respond rapidly in case of emergencies [2]. Through the integration of smart devices 
and monitoring platforms, the system consolidates medical resources, social service resources 
and transportation resources to ensure efficient allocation during health crises. By dynamically 
optimizing resource allocation, the system enhances overall response speed and service availabil-
ity, providing comprehensive health protection for the elderly. 
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Emergency health services face challenges ranging from limited resources available to in-
creased demand for a variety of reasons, such as population ageing, more transport and increas-
ingly urbanized areas [3]. In addition, larger-scale emergencies that lead to more affected individ-
uals require that emergency organizations make more extensive use of their resources. In recent 
years, the number of emergencies worldwide has been increasing. In particular, with the aging of 
society, home healthcare has become a growing concern. This makes emergency resource sched-
uling an important aspect of emergency response [4]. Many affected countries have different ex-
periences in responding to small-scale emergencies; the present study explores emergency re-
source mobilization management in this context. Existing emergency medical rescue systems have 
many shortcomings in resource scheduling and response speed, especially when it comes to the 
special needs of homebound elderly individuals, making it difficult to provide a quick and effective 
response [5]. Therefore, constructing an intelligent system capable of real-time monitoring, rapid 
response and scheduling based on changes in the elderly's health conditions is key to improving 
the effectiveness of emergency rescue for the elderly at home. 

To address the challenges of emergency healthcare for homebound elderly individuals, an in-
novative emergency home health management system that leverages real-time data and wearable 
device monitoring is proposed. Wearable devices continuously gather essential health data, in-
cluding heart rate, blood pressure, and oxygen saturation, while also monitoring the patient’s 
physical activity and movement behaviors. These devices offer real-time health insights, allowing 
healthcare professionals to remotely track elderly individuals at home, identify early warning 
signs of potential emergencies, and initiate prompt interventions. The system features dynamic 
monitoring and rapid response mechanisms and integrates a dynamic resource scheduling model 
that considers not only the fairness of patient rescue, but also location, traffic conditions, and 
available transportation resources [6]. This model ensures that medical resources are allocated 
efficiently, minimizing the patient transfer time and optimizing the overall response time. When 
home health problems occur, they often result in casualties, which requires the design of an effec-
tive humanitarian medical relief programmer. The reliable humanitarian medical network and the 
distribution of patients are the important contents of the medical rescue plan, which directly af-
fects the rescue efficiency [7]. Therefore, design a humanitarian medical relief network, the dis-
tribution of patients to medical institutions. 

The Quantum-behaved Particle Swarm Optimization (QPSO) is an enhanced version of the tradi-
tional Particle Swarm Optimization (PSO), designed to improve search efficiency and solution qual-
ity in optimization problems [8]. Unlike the standard PSO, which relies on particles moving in a fixed 
search space, QPSO introduces quantum mechanical principles to model the behavior of particles. 
This allows particles to explore the search space in a more flexible and probabilistic manner, in-
creasing the likelihood of escaping local optima and improving the global search capability. The 
QPSO has demonstrated significant advantages in solving complex optimization problems, particu-
larly those involving dynamic and nonlinear objective functions, such as resource scheduling in 
emergency healthcare. In the context of emergency medical resource scheduling [9], the QPSO offers 
several key advantages. It efficiently handles the complexity and dynamics of the scheduling prob-
lem, where multiple factors, such as patient condition classification, waiting times and transporta-
tion logistics, must be considered. The probabilistic nature of the algorithm allows it to explore a 
wider solution space, making it capable of finding optimal or nearly optimal solutions, even in highly 
complex and constrained environments. However, the traditional QPSO still faces challenges, such 
as premature convergence and inefficient handling of constraints, particularly in real-time, dynamic 
resource allocation scenarios. To address these limitations, an improved version of the QPSO, 
termed the Improved Quantum-behaved Particle Swarm Optimization (IQPSO), is introduced. The 
IQPSO enhances the traditional QPSO by incorporating several key improvements, such as strength-
ening the global search ability, introducing a more effective constraint handling mechanism and in-
corporating a mutation operation to increase solution diversity and prevent premature conver-
gence. These modifications make the IQPSO more robust and capable of solving the dynamic and 
complex resource scheduling problem encountered in emergency healthcare situations. Simulation 
results show that the IQPSO outperforms traditional QPSO and other standard algorithms in terms 
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of reducing patient transfer time and improving scheduling efficiency, demonstrating its effective-
ness in real-time emergency medical resource scheduling. 

The remainder of this paper is organized as follows. Section 2 reviews the related literature. 
Section 3 discusses the methodology adopted in this research. Section 4 presents the mathemati-
cal model, including the problem description, assumptions and formulation. Section 5 introduces 
the metaheuristic approach, detailing the Quantum-behaved Particle Swarm Optimization (QPSO) 
and its improved version with specific components such as cellular neighbor networks, constraint 
handling, mutation operators and the roulette wheel selection strategy. Section 6 provides a case 
study, covering the case description, experimental design, parameter settings and results. Section 
7 offers a discussion of the findings. Finally, Section 8 concludes the study and outlines directions 
for future work. 

2. Literature review 
In this section, we first review the development of emergency management systems. Next, we in-
troduce the dynamic resource scheduling problem for rescue vehicles and hospitals, along with 
the corresponding models, focusing on how to optimize the allocation of emergency resources to 
improve response efficiency. 

The emergency management system has evolved from simple emergency responses to a mod-
ern, comprehensive management approach. With respect to emergency medical service systems, 
developed a web-based emergency management system that integrates geospatial information 
and technology, Global Positioning System and optimization technologies, we designed a system 
consisting of two subsystems, emergency reporting and ambulance routing [10]. The aim was to 
develop a tool for assessment of the pre-hospital EMS system using the World Health Organization 
(WHO) health system framework. The resultant information is expected to provide a holistic pic-
ture of the pre-hospital emergency medical services and develop key recommendations for PEMS 
systems strengthening [11]. Transforming the system into a unified system of high-quality emer-
gency care for all patients, improving overall public health through harm control and disease pre-
vention programmers and engaging in disease surveillance as a full partner and being prepared 
to meet all types of new community needs [12]. The aim is to design a robust two-layer EMS sys-
tem, while considering the requirements of inherent uncertainties. A two-stage stochastic pro-
gramming location assignment model is proposed to determine the location of the ambulance sta-
tion, the number and type of ambulances and the service area of each ambulance station [13] 
Through the integration of medical information system and information communication technol-
ogy, an emergency support system based on WiMAX is proposed, to meet the needs of the public 
for convenient, fast, safe, people-centered emergency support operation. The system consists of a 
medical service center, an Emergency Medical Service hospital and an emergency ambulance [14]. 
The study established a model for emergency material preparation and scheduling based on 
queueing theory and further established a workflow system for emergency material preparation, 
scheduling and transportation based on a Petri net, resulting in a highly efficient emergency ma-
terial preparation and scheduling simulation system framework [15]. This article evaluates and 
presents the Architectural blueprint for disaster management research at a macro level, mapping 
the research into five attributes of a disaster and cross-listing the data for these five parameters, 
for a deeper understanding of disaster research [4]. The study proposes a 15-dimensional frame-
work for analyzing new forms of collaboration. The framework is applied to the field of infor-
mation system by using the theory of social technology system and participatory design method 
[3]. A two-stage stochastic programming model was proposed to determine how to locate two 
types of ambulances in the first stage and solution priority emergency patients in the second stage 
after the call arrival scenario was made public. Demonstrates how the basic model adapts to in-
clude non-transport vehicles. A model formula is extended to the basic model to consider the 
probabilistic travel time and the general utility scheduling of ambulance priority to patients [16]. 
A disaster response and recovery decision support system based on hybrid meta-heuristic is pro-
posed [17]. 
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In the aspect of emergency medical rescue vehicles and hospital scheduling, it usually needs a 
lot of emergency materials and personnel scheduling when dealing with various disasters and 
other public events, emergency medical resource scheduling plays a key role. A multi-objective 
optimization model for urban logistics distribution networks (ULDN) has been proposed, aiming 
to minimize vehicle usage, transportation costs, penalties for missed time windows, carbon emis-
sions, and accounting for urban traffic congestion impacts on total costs [18]. A multi-objective 
optimization model for dynamic manufacturing resource allocation is explored, with an improved 
NSGA-II algorithm proposed to address this issue. The study demonstrates that the algorithm sig-
nificantly enhances population diversity and global search capability, effectively providing effi-
cient and reliable resource allocation solutions in dynamic manufacturing environments [19]. The 
genetic algorithms (GA) were employed to determine the precise forms of the polynomial, and the 
developed models are crucial for quantifying the impact of individual input parameters, thereby 
enhancing our understanding of key system components in the literature [20]. According to the 
needs and characteristics of patients, different groups of patients are defined, and a mixed integer 
linear programming model is proposed to find out the optimal route order of each ambulance and 
to minimize the recent service completion time (SCT) and the number of patients whose condi-
tions deteriorate due to untimely medical services [21]. A multi-period online decision-making 
problem is focused on, simulating the process of information acquisition and providing a refer-
ence for how previous decisions affect future logistics plans in the emergency resource scheduling 
scenario [22]. In order to quantitatively describe the problem of minimizing rescue time in emer-
gency logistics, a rescue resource allocation solution for storm surge submerged logistics was pro-
posed. A mixed integer linear programming (MILP) method is proposed to verify and compare the 
optimal performance of emergency logistics scheduling model. Improve efficiency in creating 
quality quotas [23]. By building and studying Markoff’s decision-making process model to deter-
mine which types of ambulances (servers) are sent to patients in real time, these problems are 
solved. The basic model considers the loss system in finite time interval and gives the deformation 
model of infinite time interval and mean return criterion [24]. A patient transportation and dis-
tribution model considering ambulance routing and hospital operating conditions is proposed. 
The model consists of a cell transport model and a nonlinear therapeutic impedance function. The 
Joseph-Louis Lagrange heuristic method is used to decompose the problem into two relatively 
easy sub-problems to speed up the modelling [25]. It is suggested that the medical supplies sched-
uling method should be adopted in major public health emergencies, and a rapid and accurate 
medical supplies solution should be formulated, this includes the distribution of medical supplies 
per vehicle to hospitals and the distribution of supply orders per vehicle to hospitals [26]. An op-
timization-based integrated decision-making model was developed to assist health-care decision 
makers in planning ambulances immediately and efficiently to relocate critically ill patients from 
their places of residence [27]. An emergency resource scheduling model with stochastic resource 
demand and unreliable transportation channel is established. There is also a reliable but more 
expensive transportation channel. The basic model of expected total cost optimization is estab-
lished, which ignores the constraint of reliable channel capacity and the demand satisfaction rate 
[28]. The single-objective model aims at the shortest scheduling time of emergency resources, and 
the multi-objective model aims at the shortest scheduling time of emergency resources and the 
shortest number of emergency rescue bases, using operational research voting Analytic hierarchy 
process to solve the model [29]. A post-disaster emergency vehicle scheduling and routing opti-
mization method based on data fusion support is studied. A scheduling and routing simulation 
model is developed, and a case study is conducted to evaluate the performance of the proposed 
approach [30]. A hybrid intelligent algorithm is proposed for modeling and solving the Job Shop 
Scheduling Problem (JSSP), in which a multiple-refined random generation is employed, and the 
advantages of genetic algorithms, particle swarm optimization, and simulated annealing are inte-
grated to enhance solution accuracy [31]. Two models are established, considering the differences 
between the same and varying degrees of injury, in which the relative cost of deprivation is one 
of the decision-making objectives emphasizing equity, the duration of halfway tolerable pain 
serves as a time window constraint to highlight rescue priorities. After proving the NP difficulty 
of the model, a new heuristic based on ant colony optimization is designed, which improves the 
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convergence speed of the algorithm [32]. An improved ant colony algorithm is proposed and mod-
eled to solve the multi-resource allocation problem in cloud computing for the new energy indus-
try, aiming to optimize task response time and achieve load balancing under system constraints 
[33]. A multi-objective resource allocation model considering both efficiency and fairness is pro-
posed. The objective of the model is to minimize the total allocation cost of resources and the total 
loss caused by insufficient resources. And Particle swarm optimization the model [34]. A new dis-
aster responder routing and scheduling (DRPRS) model is proposed, which has efficiency, fairness 
and risk objectives and is subject to work and rest-related constraints [35]. A seven-dimensional 
QoS model for distributed computing resources in the Internet of Vehicles is transformed into two 
key priorities, and a dynamic greedy algorithm is proposed for task scheduling based on weighted 
graph models [36]. Three new mathematical formulas are proposed, which differ in the way they 
establish scheduling decision and crew synchronization and develop effective inequalities based 
on some special properties of the problem [37]. A new mixed integer linear programming (MILP) 
model is proposed to minimize the rescue/job completion time for all accidents by optimizing the 
allocation and scheduling of non-expendable resources [38]. The rescue unit allocation and sched-
uling problem (RUASP) with fuzzy processing times is addressed through an evolutionary ap-
proach. A steady-state grouping genetic algorithm (SSGGA) approach is presented to minimize the 
total weighted completion time of the incidents, where the weights correspond to the severity 
levels of the incidents [39]. 

Based on the discussion above, the main contributions of this paper are as follows: 

• We have proposed an EHMS for home-based elderly care, which integrates monitoring de-
vices such as smart bracelets and realizes real-time upload of dynamic data. 

• The core of this system lies in the construction of an EMTVHSM, which fully considers the 
classification of patients’ conditions and waiting times to comprehensively measure and 
evaluate the actual effectiveness of rescue operations. 

• To address the aforementioned issues, we have designed an IQPSO. The main improvements 
of this algorithm include the introduction of a neighborhood structure, optimization of con-
straint handling methods, and the incorporation of mutation operations, which significantly 
enhances its ability to solve complex scheduling problems. 

3. Methodology 
In response to the increasingly severe challenges of an aging society, it is particularly important 
to build an Emergency Home Monitoring System (EHMS). With the increase in the elderly popu-
lation, it is necessary to strengthen the health management and emergency response capabilities 
of the elderly at home to ensure their life safety and health. The construction of the home emer-
gency monitoring system aims to effectively improve the efficiency of emergency rescue for the 
elderly at home through real-time monitoring, precise scheduling and rapid response. The system 
mainly consists of three modules: monitoring center module, information transmission module 
and emergency medical resource scheduling module. The emergency home management system 
is shown in Fig. 1. 

The diagram illustrates the overall architecture of the EHMS, with a government-led monitoring 
center at its core. Home health monitoring using artificial intelligence technology, along with big 
data, 5G, AI and cloud computing, can identify the physiological patterns and behavior habits of the 
elderly, enabling more accurate health predictions. The monitoring center receives real-time data 
uploaded from patient monitoring devices and sends data requests to hospitals and emergency ve-
hicles while also receiving feedback from these entities. All collected data, including the patient’s 
basic information (such as name, age, blood pressure, heart rate, location, etc.), the number and lo-
cations of hospitals, as well as the availability, number and locations of vehicles, are integrated and 
transmitted to the scheduling model. Based on this data, an emergency medical transport vehicle 
and hospital scheduling model is constructed and solved using the IQPSO. The final scheduling so-
lution is generated to ensure efficient emergency response and resource allocation. 
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Fig. 1 The Emergency Home Management System 

4. Mathematical model 
Our research differs from the existing literature in that it applies artificial intelligence technology 
to home health intelligence monitoring. The main focus is on the core medical resources of ambu-
lances and hospitals, with the objective of minimizing transit time. The literature referenced in 
this paper primarily addresses casualty scheduling in densely populated areas, providing valuable 
insights but leaving room for further exploration and innovation in the field of home health intel-
ligence monitoring. 

4.1 Problem description 

The dynamic scheduling problem of medical emergency support resources is closely related to the 
pain degree and survival probability of patients. Effective logistics operations can greatly reduce the 
extent of damage. The paper looked at rescue vehicles and core resources for hospital care. Rescue 
vehicles, including ambulances and social vehicles, are responsible for transporting the wounded 
from their homes to hospitals. Social vehicles mainly consider taxis that can be arranged for the 
system or ride-hailing, rather than private vehicles. Hospitals are mainly divided into second-level 
hospitals and third-level hospitals. Patients are classified into three levels based on severity, Level I 
for the most critical, Level II for moderately severe and Level III for the least severe. The 𝑖𝑖, 𝑗𝑗 and 𝑘𝑘 
are used to represent the number of patients, vehicles and hospitals, respectively. The emergency 
medical transport vehicle and hospital scheduling problem is shown in Fig. 2. 
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Fig. 2 The Emergency Medical Transport Vehicle and Hospital Scheduling Problem 

4.2 Assumptions 

As mentioned earlier, several uncertainties influence the outcome of scheduling home-to-hospital 
patient transfers. In this work, we focus on the decision-making process for scheduling patients 
to the hospital by ambulance. The specific assumptions are as follows: 

• Patient location and severity are obtained through satellite technology and intelligent mon-
itoring systems. 

• Patients are categorized by injury severity and vital signs and transported to suitable hos-
pitals. 

• Each vehicle transports one patient at a time, and simultaneous responses involves a single 
interview per patient. 

• The time from patients’ homes to vehicles is negligible. 
• Routes between hospitals and patients’ homes are feasible, with stable traffic conditions. 
• Urban climate, major natural disasters and public health emergencies are stable. 
• Patients receive prompt medical care upon arrival at the hospital. 

4.3 Formulation framework 

A specific Emergency Medical Transport Vehicle and Hospital Scheduling Model (EMTVHSM) is 
given, where 𝑃𝑃 denotes the patients that need to be transported to the hospital, where 𝑃𝑃 = 𝑃𝑃𝐼𝐼 ∪
𝑃𝑃𝐼𝐼𝐼𝐼 ∪ 𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼 indicates that the patients transported to the hospital are divided into three grades with 
different weights. That is, 𝑃𝑃𝐼𝐼 , 𝑃𝑃𝐼𝐼𝐼𝐼 and 𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼 represent the set of patients at the corresponding level, 
respectively. 𝜔𝜔𝑖𝑖 represents the weight of the 𝑖𝑖-th patient, 𝜔𝜔𝑖𝑖 = {𝜔𝜔𝐼𝐼 ,𝜔𝜔𝐼𝐼𝐼𝐼 ,𝜔𝜔𝐼𝐼𝐼𝐼𝐼𝐼}, 𝜔𝜔𝑖𝑖 ≥ 1, in this paper, 
𝜔𝜔𝐼𝐼 is assigned a value of 1, 𝜔𝜔𝐼𝐼𝐼𝐼 a value of 2, and 𝜔𝜔𝐼𝐼𝐼𝐼𝐼𝐼 a value of 3. 𝑊𝑊𝑖𝑖 represents the time of the 𝑖𝑖-th 
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patient to wait for system allocation, 𝐴𝐴𝑗𝑗  represents the availability time of the 𝑗𝑗-th vehicle, 𝑑𝑑𝑖𝑖,𝑗𝑗  
represents the distance from the location of vehicle 𝑗𝑗 when it is available to the location of patient 
𝑖𝑖, 𝐿𝐿𝑗𝑗 represents the set of times of the 𝑗𝑗-th vehicle was actually used, 𝐿𝐿𝑗𝑗 = �1,⋯ ,𝑁𝑁𝑗𝑗�, 𝑁𝑁𝑗𝑗  represents 
the number of times of the 𝑗𝑗-th vehicle was actually used, 𝑣𝑣𝑗𝑗 represents the velocity of the 𝑗𝑗-th 
vehicle. 𝐻𝐻 denotes the set of hospitals, 𝑉𝑉  represents the set of vehicles, 𝑇𝑇𝑖𝑖  represents the time 
from the monitoring system reports that the patient needs to be sent to the hospital to the patient 
arrives at the hospital. 𝑡𝑡𝑗𝑗,𝑙𝑙−1 represents the time when the vehicle 𝑗𝑗 takes the previous patient to 
the hospital, where 𝑙𝑙 − 1 represents the previous time of the 𝑙𝑙-th transhipment of a specific vehi-
cle. 𝑑𝑑l−1,𝑖𝑖 represents the distance between the location where the vehicle dropped off the previous 
patient and patient 𝑖𝑖. Finally, we have the decision variables: 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑙𝑙,𝑘𝑘 = �1, Patient 𝑖𝑖 is transported to hospital 𝑘𝑘 by vehicle 𝑗𝑗 for the 𝑙𝑙-th time
0, otherwise  (1) 

The optimization problem is formulated as: 
𝑓𝑓 = min𝑚𝑚𝑚𝑚𝑚𝑚{𝑇𝑇𝑖𝑖} (2) 

𝑇𝑇𝑖𝑖 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

���𝑥𝑥𝑖𝑖,𝑗𝑗,𝑙𝑙,𝑘𝑘 �𝑒𝑒
𝑊𝑊𝑖𝑖+𝐴𝐴𝑗𝑗+

𝑑𝑑𝑖𝑖,𝑗𝑗
𝑣𝑣𝑗𝑗

𝜔𝜔𝑖𝑖 �𝑊𝑊𝑖𝑖 + 𝐴𝐴𝑗𝑗 +
𝑑𝑑𝑖𝑖,𝑗𝑗
𝑣𝑣𝑗𝑗
� +

𝑑𝑑𝑖𝑖,𝑘𝑘
𝑣𝑣𝑗𝑗
�

𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙𝑙𝑙𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑙𝑙 = 1

���𝑥𝑥𝑖𝑖,𝑗𝑗,𝑙𝑙,𝑘𝑘 �𝑒𝑒
𝑊𝑊𝑖𝑖+𝑡𝑡𝑗𝑗,𝑙𝑙−1+

𝑑𝑑𝑙𝑙−1,𝑖𝑖
𝑣𝑣𝑗𝑗

𝜔𝜔𝑖𝑖 �𝑊𝑊𝑖𝑖 + 𝑡𝑡𝑗𝑗,𝑙𝑙−1 +
𝑑𝑑l−1,𝑖𝑖

𝑣𝑣𝑗𝑗
� +

𝑑𝑑𝑖𝑖,𝑘𝑘
𝑣𝑣𝑗𝑗
�

𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙𝑙𝑙𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑙𝑙 ≥ 2

 (3) 

���𝑥𝑥𝑖𝑖,𝑗𝑗,𝑙𝑙,𝑘𝑘 = 1
𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙𝑙𝑙𝐿𝐿𝑗𝑗𝑗𝑗∈𝑉𝑉

,∀𝑖𝑖 ∈ 𝑃𝑃 
(4) 

��𝑥𝑥𝑖𝑖,𝑗𝑗,𝑙𝑙,𝑘𝑘 = 1
𝑙𝑙𝑙𝑙𝐿𝐿𝑗𝑗𝑗𝑗∈𝑉𝑉

,∀𝑖𝑖 ∈ 𝑃𝑃 (5) 

�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑙𝑙,𝑘𝑘 = 1
𝑘𝑘𝑘𝑘𝑘𝑘

,∀𝑖𝑖 ∈ 𝑃𝑃 (6) 

�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑙𝑙,𝑘𝑘 = 1
𝑖𝑖∈𝑃𝑃

,∀𝑗𝑗 ∈ 𝑉𝑉,∀𝑙𝑙𝑙𝑙𝐿𝐿𝑗𝑗 (7) 

Eq. 2 is the objective function to minimize the maximum value of 𝑇𝑇𝑖𝑖 for all patients. Eqs. 4-7 are 
constraints. Eq. 4 means that each patient must be assigned exactly once. Eq. 5 means that each 
patient must be assigned the specific time of unique vehicle only once. Eq. 6 means that each pa-
tient must be assigned to a unique hospital. Eq. 7 means that the specific time of each vehicle can 
transport only one patient. 

5. Metaheuristic method 
To address the resource scheduling problem in dynamic environments, a metaheuristic algorithm 
is adopted and improved to enhance its performance. 
5.1 Quantum-behaved Particle Swarm Optimization 
Inspired by the related work of Heppner and Grenander [40] and the social behavior of a flock of birds 
and a school of fish, Particle Swarm Optimization (PSO) was proposed in 1995, which is very popular 
in many fields [41]. To address the limitations of PSO, Quantum-behaved Particle Swarm Optimization 
(QPSO) was introduced to enhance PSO’s exploration and exploitation capabilities within the solution 
space. This improvement is achieved by increasing the particle swarm’s population diversity through 
the motion of quantum particles, each existing in a quantum superposition of two classical physical 
locations at any given moment [9]. The flow chart of the QPSO is shown in Fig. 3. 
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Fig. 3 The flow chart of QPSO 

5.2 Improved Quantum-behaved Particle Swarm Optimization 

The Improved Quantum-behaved Particle Swarm Optimization (IQPSO) enhances QPSO by intro-
ducing a small-world network structure for global optimization, utilizing three types of neighbor-
hood networks, the Von Neumann neighborhood, the Moore neighborhood and the Extended 
Moore neighborhood. Constraints are handled by randomly adjusting out-of-bound dimensions 
with equal probabilities of selecting random values, personal best locations, global best locations, 
or boundary values. Additionally, a mutation operation is incorporated, where the mutation prob-
ability dynamically increases as iterations progress. This is achieved by introducing the number 
of times an individual has not improved and modifying the mutation coefficient to emphasize ex-
ploration in later iterations. 

The algorithm also employs a random roulette-based mutation strategy for task reassignment. 
Patients with longer delivery times are prioritized for reassignment and vehicles with shorter de-
livery times are more likely to be selected for new assignments. This ensures an efficient balance 
between exploration and exploitation while maintaining diversity. The improved strategies effec-
tively enhance the algorithm’s ability to find optimal solutions under complex constraints. The 
general pseudo-code of the IQPSO is shown in Algorithm 1. 

Algorithm 1 The general pseudo-code of the IQPSO 
Step 0: Setting the parameters. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is set, along with the swarm size 𝑁𝑁𝑠𝑠 and the dimensionality of the problem 
𝑁𝑁𝑑𝑑. The contraction-expansion coefficient 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is defined, starting with a maximum value 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑚𝑚𝑚𝑚𝑚𝑚 and gradually 
reducing to a minimum value 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑚𝑚𝑚𝑚𝑚𝑚. Mutation parameters 𝑎𝑎 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are specified. Parameters for constructing 
the small-world network are set, including the number of rows 𝑟𝑟, columns 𝑐𝑐, rewiring probability 𝑝𝑝 and network 
depth 𝑑𝑑. The number of nearest neighbors k is set. Finally, chaotic maps are initialized to facilitate random number 
generation. 
Step 1: Generate the small-world network. Construct the network structure using the specified parameters. Obtain 
the nearest neighbors for each particle in the swarm. 
Step 2: Initialization of the swarm. The swarm is initialized by randomly locations 𝑥𝑥 to each particle within the solu-
tion space, with the random numbers generated using the Logistic map.  
Step 3: Initialize the historical optimal location of each individual. 
Step 4: Initialize the global best location. 
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Step 5: Initialize chaotic random numbers. Generate chaotic random sequences for parameters 𝑘𝑘,𝑢𝑢, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 and others 
required for dynamic updates. 
Step 6: Iterative process. 
for 𝑖𝑖𝑖𝑖𝑖𝑖 =  1 ∶  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

Step 6.1: Update 𝐾𝐾 nearest neighbors best. 
Step 6.2: Generate chaotic random values for parameters 𝑘𝑘,𝑢𝑢, and 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒. 
Step 6.3: Calculate the mean best location 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and contraction-expansion factor 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 
Step 6.4: Update particle location. 
Step 6.5: Handle boundary constraints for updated location. 
Step 6.6: Perform mutation operations. If a particle is selected to perform the mutation operation, the roulette 
strategy is adopted. 
Step 6.7: Evaluate the fitness of the individual. 
Step 6.8: Update the personal best location 𝑃𝑃𝑃𝑃. 
Step 6.9: Update the global best location 𝐺𝐺𝐺𝐺. 
Step 6.10: Record the global best fitness. 
Step 6.11: Update the continuous unimproved number of each particle. 

end 

Cellular neighbor network introduction 

In human society or a network, cellular neighbor structures can achieve good performance [42]. 
Therefore, the cellular neighbor network proposed in the literature [42] is introduced into the 
IQPSO. In the IQPSO, a cellular neighborhood network is introduced to enhance the exploration 
and exploitation capabilities of particles. Each cell represents the current location of a particle, 
which corresponds to the best location it has found in the search space. The cellular neighborhood 
structure defines the information exchange among particles, influencing the algorithm’s conver-
gence performance and solution quality. Fig. 4 shows examples of cellular neighborhoods and cel-
lular neighbor networks. 

 
Fig. 4 The examples of cellular neighborhoods and cellular neighbor networks 

The IQPSO adopts three classic neighborhood structures: the Von Neumann neighborhood, the 
Moore neighborhood and the Extended Moore neighborhood. Figs. 4a, 4b, and 4c show examples 
of these neighborhoods. In these subfigures, the orange squares represent the observed object 
and the purple squares represent its neighbors. Examples of their cellular neighbor networks are 
shown in subfigures Figs. 4d, 4e, and 4f. 

 Constraint handling 

During the location update process in the IQPSO particles may violate the solution space bounda-
ries. So, the particle location 𝑥𝑥(𝑖𝑖, 𝑗𝑗) is adjusted as follows. 
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𝑥𝑥(𝑖𝑖, 𝑗𝑗) =

⎩
⎪
⎨

⎪
⎧𝑙𝑙𝑙𝑙(1, 𝑗𝑗) + �𝑙𝑙𝑙𝑙(2, 𝑗𝑗) − 𝑙𝑙𝑙𝑙(1, 𝑗𝑗)� ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,  0 ≤ 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0.25

𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑗𝑗), 0.25 ≤ 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0.5
𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖, 𝑗𝑗), 0.5 ≤ 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0.75
𝑙𝑙𝑙𝑙(1, 𝑗𝑗),  𝑥𝑥(𝑖𝑖, 𝑗𝑗) < 𝑙𝑙𝑙𝑙(1, 𝑗𝑗)  ∧  𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0.75
𝑙𝑙𝑙𝑙(2, 𝑗𝑗), 𝑥𝑥(𝑖𝑖, 𝑗𝑗) > 𝑙𝑙𝑙𝑙(2, 𝑗𝑗)  ∧  𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0.75

 (8) 

In the equation, 𝑙𝑙𝑙𝑙(1, 𝑗𝑗) and 𝑙𝑙𝑙𝑙(2, 𝑗𝑗) represent the lower and upper boundaries of the 𝑗𝑗-th di-
mension, respectively. The variable 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a uniformly distributed random number within the 
interval [0, 1]. 𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑗𝑗) and 𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖, 𝑗𝑗) are the personal best and global best location s for the 𝑗𝑗-th 
dimension, respectively. The variable 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is generated from a uniform distribution 𝑈𝑈(0,1), de-
termining the probability of selecting each update rule. This ensures that the updated location 
remains within the valid boundaries while utilizing individual and global knowledge for optimi-
zation. 

 Mutation operator 

In order to enhance the diversity of the algorithm, the mutation operator is introduced [43]. How-
ever, IQPSO incorporates three key differences. First, Historical Non-Improvement Count: Muta-
tion probability incorporates each individual’s non-improvement count, calculated as 
exp (𝑛𝑛𝑛𝑛_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝛿𝛿
) , increasing the mutation likelihood for stagnant particles. The variable 

𝑛𝑛𝑛𝑛_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 represents the number of iterations in which an individual has not improved. Sec-
ond, Iteration-Dependent Mutation Probability: where mutation probability decreases over iter-
ations (𝑒𝑒 > 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) , IQPSO reverses this to increase mutation probability �𝑒𝑒 < 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�  as 𝑒𝑒 de-
creases with iteration, enhance the later exploration. Third, Logistic Map for Random Numbers. 
IQPSO generates all random numbers. This includes the random numbers used in the mutation 
process. It uses the Logistic map to introduce chaotic randomness. This approach enhances diver-
sity and improves the effectiveness of the search. If a particle meets the mutation condition, the 
roulette wheel selection strategy is executed. 

 Roulette wheel selection strategy 

The roulette wheel selection strategy assigns probabilities to options based on their weights, en-
suring higher chances for those with greater importance. The roulette wheel selection strategy in 
IQPSO first identifies the task with the longest service time (e.g., the most delayed patient). It then 
selects a new vehicle for reassignment by prioritizing vehicles with shorter workloads using an 
inverse weighted probability. Finally, the selected task is reassigned to the new vehicle, optimiz-
ing resource allocation and balancing workload. The roulette selection strategy description is 
shown in Fig. 5. 

First, calculate the weighted time for each patient and the vehicle used for transportation. Sec-
ond, identify the patient with the maximum weighted time and highlight it; for example, patient 
P6 is marked in yellow in the example. Then, identify all patients being transported by the same 
vehicle as the patient with the maximum weighted time (in this case, vehicle V3 transporting pa-
tients P2 and P6). Apply a roulette wheel selection strategy, where the weighted transportation 
time for each patient (P2 and P6) is used as the selection probability. Patients with longer trans-
portation times have a higher likelihood of being selected. Select the patient who needs to switch 
vehicles, such as P6. Third, identify all vehicles other than the one transporting the patient with 
the maximum weighted time (P6), which in this case are vehicles V1 and V2. Apply a roulette 
wheel selection strategy, where the weighted time of the last patient transported by each of the 
other vehicles is used as the selection probability. Vehicles with longer transportation times will 
have a lower chance of being selected. Select a new vehicle to transport the patient (P6), such as 
V2. Fourth, mark the vehicle changes. Fifth, give the final scheduling solution. 
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Fig. 5 The description of roulette selection strategy 

5.3 Encoding example 

The relative location indexing [44] based encoding solution is introduced to extend IQPSO to solve 
combinatorial optimization problems. Fig. 6 show an example of the encoding solution, respec-
tively. In the proposed encoding solution, the particle has 2𝐼𝐼 dimensions, with the value range of 
each dimension in the first half being [0, 𝐽𝐽] and the value range of each dimension in the latter half 
being [0,𝐾𝐾]. 

The coding solution can be described by the following steps. 
First, when initializing the location s of particles in the context of patient-vehicle allocation, 

where the location in a specific dimension needs to be determined based on a random number, a 
random number is generated, rounded up and set as the initial location for that dimension. The 
vehicle information corresponding to the row index is then retrieved from the vehicle table, where 
the first rounded-up number corresponds to the first row in the vehicle table, representing the 
vehicle with the ID of 1, labeled "Code". This results in the vehicle allocation outcome as follows: 
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(1,1), (2,3), (3,2), (4,1), (5,1), (6,3), (7,2), (8,1). In this notation, ( , )represents the patient ID and 
the row number in the vehicle table. For example, (3,1) indicates that 𝑃𝑃3 is assigned to the vehicle 
corresponding to the first row in the vehicle table. Furthermore, this leads to the specific vehicle 
assignments: (𝑃𝑃1,𝑉𝑉1), (𝑃𝑃2,𝑉𝑉3), (𝑃𝑃3,𝑉𝑉2), (𝑃𝑃4,𝑉𝑉1), (𝑃𝑃5,𝑉𝑉1), (𝑃𝑃6,𝑉𝑉3), (𝑃𝑃7,𝑉𝑉2), (𝑃𝑃8,𝑉𝑉1). In this 
case, "( , )" represents the patient’s code and a specific vehicle arrangement in Subtable2. 

Next, the hospital allocation for patients also needs to be determined based on a random num-
ber. A random number is generated, rounded up and set as the initial location for that dimension. 
The hospital information corresponding to the row index is then retrieved from the hospital table, 
resulting in the hospital allocation outcomes: (1,1), (2,2), (3,1), (4,3), (5,2), (6,3), (7,3), (8,2). In 
this case, "( , )" represents the patient’s code and the row number in Subtable1 that corresponds 
to the hospital. For example, "(2,3)" indicates that 𝑃𝑃2 was treated at Hospital 𝐻𝐻3 in Subtable1 and 
by knowing the relative location n of the allocated hospital, we can further obtain the specific hos-
pital information in that row: (𝑃𝑃1,𝐻𝐻1) , (𝑃𝑃2,𝐻𝐻2) , (𝑃𝑃3,𝐻𝐻1) , (𝑃𝑃4,𝐻𝐻3) , (𝑃𝑃5,𝐻𝐻2) , (𝑃𝑃6,𝐻𝐻3) , 
(𝑃𝑃7,𝐻𝐻3), (𝑃𝑃8,𝐻𝐻2). Here, ( , ) represents the patient ID and the specific hospital assigned, ulti-
mately leading to the hospital allocation plan. 
 

 
Fig. 6 The example of the encoding solution 
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Then, assuming that patients can receive treatment immediately upon arrival at the hospital, 
the only thing needed is to arrange the order of transportation for the patients. The decimal parts 
of each dimension in the first half of the particle are sorted to obtain the transportation order of 
the patients. In this encoding demonstration, the relative location index results of the treatment 
order are 8, 2, 1, 5, 6, 3, 7, 4, which corresponds to the specific order of patients: 𝑃𝑃8, 𝑃𝑃2, 𝑃𝑃1, 𝑃𝑃5, 
𝑃𝑃6, 𝑃𝑃3, 𝑃𝑃7, 𝑃𝑃4. 

After that, combining the allocation of patients to vehicles and the order of patient transporta-
tion, we can obtain the vehicle scheduling plan: {𝑉𝑉1, (𝑃𝑃8,𝑃𝑃1,𝑃𝑃5,𝑃𝑃4)} ; {𝑉𝑉2, (𝑃𝑃3,𝑃𝑃7)} ; 
{𝑉𝑉3, (𝑃𝑃2,𝑃𝑃6)}. For example, {𝑉𝑉3, (𝑃𝑃2,𝑃𝑃6)} indicates that will first transport 𝑃𝑃2 and then 𝑃𝑃6. 

Finally, by combining the patient-vehicle scheduling plan and the patient-hospital allocation 
plan, we can obtain the final scheduling plan: {𝑉𝑉1: (𝑃𝑃8,𝐻𝐻2,𝑃𝑃1,𝐻𝐻1,𝑃𝑃5,𝐻𝐻2,𝑃𝑃4,𝐻𝐻3) , 
𝑉𝑉2: (𝑃𝑃3,𝐻𝐻1,𝑃𝑃7,𝐻𝐻3), 𝑉𝑉3: (𝑃𝑃2,𝐻𝐻2,𝑃𝑃6,𝐻𝐻3)}. For example, {𝑉𝑉3, (𝑃𝑃2,𝐻𝐻2,𝑃𝑃6,𝐻𝐻3)} indicates that 𝑉𝑉3 
will transport 𝑃𝑃2 to 𝐻𝐻2 and then transport 𝑃𝑃6 to 𝐻𝐻3. 

6. Case study 
A numerical experiment is designed to evaluate the performance of the IQPSO. Benchmark in-
stances are introduced, together with an encoding solution, to determine the parameters of the 
algorithm. 

6.1 Case description 

We provide a quantitative analysis to evaluate the proposed model and algorithm, comparing the 
fair solution with the system’s optimum. We use Haidian District in Beijing as a case study; the 
system monitors 60 patients who require assistance. There are 7 hospitals available for schedul-
ing within the district, including 3 hospitals of Level II and 4 hospitals of Level III. Additionally, 
the system has access to 20 rescue vehicles, comprising 15 ambulances and 5 taxis or e-taxis, all 
can be deployed. 

Table 1 outlines the patients who need to be transferred to a hospital for treatment at that 
particular time. Table 2 presents the available hospitals in the network, located near the potential 
medical needs of the patients. Finally, Table 3 provides details on the vehicles assigned to 
transport patients from their homes to the hospitals. Fig. 7 illustrates the distribution of 60 pa-
tients, 20 vehicles and 7 hospitals in this case. 

 
Table 1 Patient condition form 

Code Name Sex Age Grade Waiting time(h) Location 
1 San Zhang Male 60 III 0.05  (116.3152, 40.0215)  
2 Si Li Female 61 III 0.10   (116.3220, 39.9700)  
3 Wu Wang Female 66 II 0.02  (116.3257, 39.9639)  
4 Bing Cui Male 67 I 0.03  (116.2970, 39.9855)  
5 Yi Liu Female 77 II 0.13   (116.3285, 39.9887)  
6 Ding Li Male 63 III 0.37  (116.3355, 39.9736)  
7 Geng Yang Male 75 II 0.08   (116.2998, 40.0001)  
8 Wu Hou Male 76 I 0.13  (116.3511, 39.9552)  
9 Wu Liu Female 80 III 0.20   (116.2743, 39.9820)  

10 Liu Li Male 63 I 0.00   (116.3487, 39.9789)  
11 Fei Zhang Female 76 III 0.05   (116.3524, 39.9200)  
12 Tian Li Female 75 II 0.00   (116.3009, 40.0244)  
13 Bu Yang Female 78 II 0.08  (116.2751, 39.9487)  
14 Wen Yin Male 65 III 0.20   (116.3642, 39.9778)  
15 Peng Li Male 79 I 0.35  (116.3256, 39.9443)  
16 Li Cui Female 63 III 0.00  (116.3165, 39.9752)  
17 Li Li Female 62 III 0.07  (116.2974, 39.9180)  
18 Yi Song Male 66 II 0.10  (116.3159, 39.9532)  
19 Ren Wu Male 70 I 0.12   (116.3741, 40.0015)  
20 Di Wu Female 71 I 0.18  (116.2804, 39.9367)  
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Table 1 (Continuation) 
21 Da Zheng Male 69 III 0.38   (116.3366, 40.0042)  
22 Gang Wang Female 73 II 0.00   (116.3565, 39.9690)  
23 Zhou Zhou Male 64 II 0.05  (116.2908, 39.9204)  
24 Li Wang Male 72 III 0.25   (116.3144, 39.9812)  
25 Gu Yang Female 78 II 0.10  (116.3299, 39.9956)  
26 Fei Xu Male 74 III 0.15  (116.3700, 39.9784)  
27 Bing Yan Female 72 I 0.08  (116.2952, 39.9502)  
28 Sheng Chen Male 66 III 0.15   (116.3258, 39.9623)  
29 San Xu Male 58 II 0.00   (116.3190, 39.9358)  
30 Tou Zhu Male 62 I 0.08  (116.3374, 40.0071)  
31 Mau Ding Male 61 III 0.22   (116.3111, 39.9494)  
32 Ting Pan Female 52 III 0.08  (116.3430, 39.9660)  
33 Da Lu Female 57 I 0.33   (116.2837, 39.9299)  
34 Lu Wei Female 71 II 0.13   (116.3253, 39.9707)  
35 Tao Yang Male 77 I 0.23  (116.3301, 39.9632)  
36 Liu He Male 73 III 0.42  (116.3456, 40.0019)  
37 Bao Luo Female 78 II 0.37  (116.2957, 39.9393)  
38 Fang Cheng Male 68 I 0.27   (116.3549, 39.9572)  
39 Yang Wang Female 70 II 0.00  (116.3103, 39.9330)  
40 Zhen Fang Male 62 III 0.03  (116.3182, 39.9851)  
41 San Xiong Male 66 III 0.10   (116.3387, 39.9467)  
42 Qian Wan Female 63 II 0.13   (116.3280, 39.9509)  
43 Piao Bai Male 71 III 0.27  (116.3434, 39.9744)  
44 Jian Hao Male 75 I 0.12   (116.2914, 40.0132)  
45 Mao Jin Female 67 III 0.08   (116.3077, 39.9706)  
46 Tu Hu Female 65 II 0.17  (116.3562, 39.9811)  
47 Duo Yu Male 69 III 0.03  (116.2758, 39.9383)  
48 Niu Ma Male 77 I 0.02   (116.3156, 39.9430)  
49 Du Liu Female 58 II 0.08  (116.3451, 40.0166)  
50 Li Qin Male 67 III 0.25  (116.2841, 39.9592)  
51 Ge Fu Male 66 III 0.37  (116.3398, 39.9763)  
52 Hui Su Female 62 II 0.10  (116.3287, 39.9485)  
53 Mei Chen Female 72 I 0.17  (116.2904, 40.0030)  
54 Ke Niu Male 59 III 0.05   (116.3576, 39.9663)  
55 An Shi Female 70 I 0.00   (116.3129, 39.9271)  
56 Ying Yu Female 72 II 0.07   (116.3217, 39.9912)  
57 Jin Hu Male 68 III 0.33   (116.3381, 40.0058)  
58 Qiang Gao Female 69 I 0.13   (116.2809, 39.9527)  
59 Jin Niu Female 67 III 0.10  (116.3142, 39.9848)  
60 Xian Yang Male 65 II 0.02   (116.3493, 39.9710)  

 
Table 2 Hospital condition form 

Code Name Grade Location 
1 Haidian Hospital II (116.3155,39.9766) 
2 The Third Hospital of Peking University III (116.3600,39.9827) 
3 Shangdi Hospital II (116.2987,40.0239) 
4 Zhongguancun Hospital II (116.3206,39.9800) 
5 Beijing 466 hospital III (116.3069,39.9637) 
6 Peking University Hospital of stomatology III (116.3252,39.9523) 
7 Peking University Cancer Hospital III (116.2897,39.9232) 

 
Table 3 Vehicle condition form 

Code Name Type Velocity (km/h) Available time (h) Location 
1 Ambulance1 Ambulance 72 0.00  (116.3264, 39.9620) 
2 Ambulance2 Ambulance 72 0.13   (116.3478, 39.9726) 
3 Social vehicles1 Social vehicles 50 0.12   (116.3123, 39.9451) 
4 Ambulance3 Ambulance 72 0.37  (116.3332, 39.9538) 
5 Ambulance4 Ambulance 73 0.00  (116.3294, 39.9964) 
6 Ambulance5 Ambulance 72 0.20  (116.2905, 40.0120) 
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Table 3 (Continuation) 
7 Social vehicles2 Social vehicles 50 0.10   (116.3368, 39.9489) 
8 Ambulance6 Ambulance 72 0.05   (116.3436, 39.9801) 
9 Social vehicles3 Social vehicles 50 0.42   (116.3114, 39.9712) 

10 Ambulance7 Ambulance 72 0.08   (116.3002, 39.9231) 
11 Ambulance8 Ambulance 72 0.03   (116.3523, 39.9875) 
12 Social vehicles4 Social vehicles 50 0.02   (116.3199, 39.9307) 
13 Ambulance9 Ambulance 72 0.17   (116.2996, 39.9557) 
14 Ambulance10 Ambulance 72 0.17   (116.3344, 40.0180) 
15 Ambulance11 Ambulance 72 0.03  (116.3605, 39.9823) 
16 Ambulance12 Ambulance 72 0.05  (116.2929, 39.9482) 
17 Social vehicles5 Social vehicles 50 0.02  (116.3105, 39.9768) 
18 Ambulance13 Ambulance 72 0.07   (116.3268, 39.9648) 
19 Ambulance14 Ambulance 72 0.11  (116.3539, 39.9611) 
20 Ambulance15 Ambulance 72 0.05  (116.3120, 39.9845) 

 
 

 
Fig. 7 The distribution of patients, vehicles and hospitals 

6.2 Experimental design 

The CQPSO proposed in [45] and the original QPSO [46-48] are selected for comparison. In IQPSO, 
the Cellular neighbor network structure adopts the Von Neumann neighborhood, the Moore 
neighborhood and the Extended Moore neighborhood, represented by IQPSO Von Neumann, 
IQPSO Moore and IQPSO Extended Moore, respectively. These algorithms are used to solve the 
case for comparison. 

All selected algorithms are programmed in MATLAB. Each algorithm is applied to solve the 
Haidian district problem set and is run 30 times independently. The software environment for 
numerical experiments is the R2024b version of MATLAB. The hardware environment for numer-
ical experiments is a laptop with a x64-processor Intel(R) Core (TM) i7-8550U CPU @ 1.80 GHz 
1.99 GHz and 16 GB RAM. 
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6.3 Parameter settings 

The parameters of the algorithms are set based on literature and experiments. The 𝑝𝑝 and are 𝑑𝑑 
defined by [42], the 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 are defined by [45] and the 𝑎𝑎 is defined by [43]. The others 
are set according to the experiments. The parameters of the algorithms are shown in Table 4. 

 
Table 4 The parameters of the algorithms 

No Name Value No Name Value No Name Value 
1 𝑟𝑟 10 5 𝑘𝑘 96 9 𝑎𝑎 8 
2 𝑐𝑐 20 6 𝑁𝑁𝑠𝑠 200 10 𝛿𝛿 10 
3 𝑝𝑝 0.5 7 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚  1 11 Max _𝑖𝑖𝑖𝑖𝑖𝑖 8000 
4 𝑑𝑑 5 8 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚  0.4    

6.4 Experimental result 

The average convergence of the algorithms for the optimal solution of the case shown in Fig. 8. 
IQPSO with the three neighborhood structures (Von Neumann, Moore and Extended Moore) out-
performs both CQPSO and QPSO in terms of convergence speed and overall performance. Among 
these, the Extended Moore neighborhood structure yields the best results, indicating that the 
choice of neighborhood structure significantly enhances the algorithm’s performance. Compared 
to CQPSO and QPSO, IQPSO demonstrates superior performance, especially with the inclusion of 
the neighborhood structures. IQPSO achieves a lower fitness value in the long run, highlighting 
the benefits of incorporating the neighborhood structures. 

 

 
Fig. 8 The average convergence of the algorithms for the optimal solution of the case 

Table 5 shows the results of different algorithms in the simulation model, including the mini-
mum, maximum, mean and standard deviation. It can be observed that all algorithms have similar 
mean values, but there are differences in the maximum values and standard deviations, with the 
IQPSO series algorithms showing more stability. Fig. 9 shows the statistical analysis of the algo-
rithms for the fitness for the case. The red + in Fig. 9 represents outliers. It can be seen from the 
figure that the various versions of IQPSO have better statistical performance and both of them are 
better than CQPSO and QPSO. Moreover, the Extended Moore neighborhood has better perfor-
mance than the Von Neumann neighborhood and can obtain solutions that are closer to the 
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optimal solutions of the benchmark instances. The Extended Moore neighborhood can reduce the 
convergence speed of the algorithm, which is beneficial to avoid the algorithm falling into the local 
optimal solution and is more likely to find the global optimal solution. 

 

 
Fig. 9 The statistical analysis of the algorithms on the fitness for the case 

Table 5 The computational statistics of the algorithms for the fitness of the case 
Name Min Max Mean Std. 

IQPSO Von Neumann 0.86 0.94 0.9 0.02 
IQPSO Moore 0.85 0.94 0.9 0.02 

IQPSO Extended Moore 0.85 0.93 0.9 0.02 
CQPSO 0.88 1 0.95 0.03 
QPSO 0.9 1.04 0.96 0.03 

 
Fig. 10 shows the running time of IQPSO is almost double that of CQPSO and QPSO, but it can 

also obtain a sub-optimal solution in a reasonable time, which means it has a strong practical ap-
plication value. The running time of IQPSO with various neighborhood structures is basically the 
same, different neighborhood structures have little effect on the algorithm running time. 

Fig. 11 shows the weighted transportation time, that is, fitness for 60 patients. While the 
weighted transportation time is generally evenly distributed, some patients experience longer 
times. This suggests that, although the overall distribution is fairly uniform, individual patient 
needs and transportation routes contribute to variations. The data highlights the importance of 
optimizing the transportation scheduling process to reduce costs and improve efficiency. Fig. 12 
shows the transportation time for 60 patients. The transportation process for each patient is di-
vided into three stages: waiting time for system allocation (red), vehicle availability time (yellow) 
and transportation time, which is the time the vehicle reaches the patient (green). The data in the 
figure reflects the distribution of different time periods during the patient transfer process. Fig. 
13 shows the Gantt chart of 60 patients (from P1 to P60), displaying the transfer situation for each 
vehicle. This chart highlights the patient allocation and vehicle scheduling the IQPSO, illustrating 
the performance during the transportation process. 
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Fig. 10 The statistical analysis of the algorithms on the running time for the case 

 

 
Fig. 11 The Gantt chart of fitness for the case with IQPSO Moore 
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Fig. 12 The Gantt chart of patient for the case with IQPSO Moore 

 

 
Fig. 13 The Gantt chart of Vehicle for the case with IQPSO Moore 

7. Discussion 
The EMTVHSP is addressed within the context of an emergency home health monitoring system. 
The system is designed around a comprehensive emergency management framework that incor-
porates wearable monitoring devices for elderly patients, as well as 5G, big data and other artifi-
cial intelligence technologies. It also includes a monitoring center and an emergency medical re-
source scheduling solution. 

An innovation of the model is that it considers both the severity of the patient‘s condition and 
the waiting time to measure the rescue effect. Unlike traditional models that treat all patients 
equally, this model assigns weighted priorities based on the severity of each patient’s condition. 



Zhang, Yang, Zheng, Li, Liang 
 

274 Advances in Production Engineering & Management 20(2) 2025 
 

Specifically, the more critical the patient's condition and the longer their waiting time, the higher 
the priority and the faster they receive treatment. Additionally, the model considers the real-time 
availability of rescue vehicles, acknowledging that these vehicles are not always accessible. 

To optimize the scheduling process within this model, an improved QPSO is proposed. This 
enhanced algorithm addresses the limitations of traditional methods in handling complex, dy-
namic events by improving the global search capability. The algorithm integrates small-world net-
works, such as the Von Neumann neighborhood, the Moore neighborhood and the Extended 
Moore neighborhood, which allows for better exploration of the solution space and increased so-
lution diversity. The algorithm also incorporates multiple constraint-handling strategies—ran-
dom generation, 𝑃𝑃𝑃𝑃𝑃𝑃, 𝐺𝐺𝐺𝐺𝐺𝐺 and boundary values that ensure the feasibility and adaptability of the 
scheduling solutions. Furthermore, the improved QPSO addresses common issues such as prem-
ature convergence by introducing mutation operations based on individual historical stagnation 
and dynamically adjusted mutation probability. These modifications strengthen the algorithm’s 
exploration ability during later iterations, allowing it to respond more effectively to changing 
emergency conditions. In terms of scheduling strategies, the algorithm employs a roulette-wheel 
mutation method to reassign patient transportation paths. This innovation helps to minimize 
transportation delays, thereby improving the efficiency of emergency responses. 

Different neighborhood structures significantly affect IQPSO's convergence, optimal solution 
quality and running time. IQPSO Von Neumann converges quickly at first but slows down later, 
while IQPSO Moore and IQPSO Extended Moore demonstrate more stable convergence, with 
IQPSO Extended Moore balancing speed and stability. In terms of optimal solution quality, IQPSO 
Moore and IQPSO Extended Moore yield better results than IQPSO Von Neumann. IQPSO Von Neu-
mann has a faster runtime, typically within 4 minutes for most benchmarks, while IQPSO Moore 
performs slightly slower but remains efficient with a runtime under 6 minutes. IQPSO outper-
forms both QPSO and CQPSO in convergence speed, solution quality and runtime. IQPSO reaches 
convergence faster and more reliably, especially in large-scale problems, compared to QPSO. 
IQPSO consistently produces higher-quality solutions. IQPSO also shows faster runtime (2-4 
minutes for medium-sized problems), outperforming CQPSO, which takes longer, particularly 
when dealing with dynamic events. 

The improvement is 5.6 % compared to the CQPSO and 6.7 % compared to the QPSO. These 
results show that the proposed system combined with the improved QPSO is well suited to meet 
the dynamic needs of emergency medical support. It has great potential for practical application 
in real-world scenarios involving emergency home health monitoring and patient transportation. 

8. Conclusion 
An improved QPSO is proposed for the EMTVHSP problem in EHMS. The EMTHDM aims to balance 
the real-time allocation of resources and minimize the maximum patient transit time, while also 
considering the rescue effect. Combined with the small world network theory, the global search 
strategy is improved, a variety of constraint processing strategies are introduced and the muta-
tion probability and roulette mutation strategy are dynamically adjusted to improve the adapta-
bility and stability of the algorithm. Experimental results show that the improved algorithm sig-
nificantly outperforms traditional methods in terms of solution quality, reducing patient waiting 
time and optimizing resource utilization. The novel optimization approach for the dynamic sched-
uling of emergency resources is proposed, with great potential to enhance emergency response 
efficiency. This is highly significant for elderly patients. In the long term, it will help safeguard the 
health of the elderly and alleviate the pressures on social elderly care and medical systems. Mean-
while, the EMTVHSP problem is essentially a scheduling problem for medical emergency re-
sources such as vehicles and hospitals. In principle, the method can be extended to other similar 
non-medical emergency scheduling, such as job shop scheduling problems in manufacturing. Fu-
ture research can explore the cost of implementing EHMS and IQPSO in actual medical systems, 
compare the effects of IQPSO with other optimization methods such as deep learning and genetic 
algorithms, and evaluate the scalability of the model in large or multi-city medical networks. Ad-
ditionally, the role of cybersecurity measures in data of wearable devices within EHMS, as well as 
the impact of varying traffic conditions on scheduling performance, can also be explored. 
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